

Day 1 – Introduction to Machine Learning for Data Science: Part 1

Module 1 – Supervised Learning

- You Are the Teacher
 - What Is Machine Learning?
 - Supervised Learning
 - Classification Versus Regression
- Why Decision Trees?
 - o Ease of Use
 - Optimal for Many Business Problems

Module 2 – Classification Trees

- Basic Intuition
 - Trees Are Rules
 - Sample Decision Tree
- Overfitting Intuition
 - The Bugbear of Machine Learning
 - The Model Is Good! Or Is It?

Module 3 – Classification Tree Math

- Gini Impurity
- Gini Change
- Many Categories Impurity
- Numeric Feature Impurity

Module 4 – Using Classification Trees

- Building Classification Trees
 - Model Specifications
 - \circ Workflows
 - \circ Model Fitting
- Hands-On Lab #1

Module 5 – Introducing the Bias-Variance Tradeoff

- Under/Overfitting
 - The Goldilocks Zone
 - Controlling Complexity
- The Bias-Variance Tradeoff
 - o Intuitive Example
 - o Model Example

Module 6 – Model Tuning

- Supervising the Data
 - \circ $\,$ Splitting the Data $\,$
 - \circ Cross-Validation
- Model Tuning Intuition
 - Making an Intuitive Example Real
 - Estimating Generalization Error
 - What About the Test Set?
- Pruning Classification Trees
 - Pruning Intuition
 - Pre-Pruning
 - Post-Pruning

Module 7 – Model Tuning

- Measuring Model Accuracy
 - Accuracy
 - Confusion Matrices
 - o Sensitivity
 - \circ Specificity
- Performing Model Tuning
 - Setting Up Cross-Validation
 - o Cross-Validation Results
 - o Tuning the Tree
 - Tuning Results
- Hands-On Lab #2

Day 2 – Introduction to Machine Learning for Data Science: Part 2

Module 8 – Feature Engineering

- Intuition
 - What Is Feature Engineering?
 - o An Example
 - Extracting Features
 - Row Versus Column Features
- Data Leakage
 - What Is It?
 - An Example
 - Avoiding Data Leakage
- Engineering Features for Decision Trees
 - Decision Boundaries
 - Visualizing Decision Boundaries
 - Concepts to Remember
- Missing Data
 - Why Is Data Missing?
 - Dealing with Missing Data
 - What Is Imputation?
 - Performing Imputation
- Hands-On Lab #3

Module 9 – Regression Trees

- The Basics
 - Regression Trees Minimize SSE
 - Calculating SSE
- Numeric Feature SSE
- Many Categories SSE
- Building Regression Trees
 - Measuring Accuracy
 - Model Specification
 - Regression Trees in Practice

Module 10 – The Mighty Random Forest

- Bad, Tree! Bad!
 - Decision Tree Variance
 - High Variance Leads to Overfitting
 - Real-World Decision Trees
- Ensembles
 - Wisdom of the Crowd
 - Manufacturing Independence
- Bagging
 - o Randomizing Rows
 - Bagging in Action
 - The Power of Bagging
- Feature Randomization
 - o Intuition
 - Randomizing Columns
 - o Feature Randomization in Action

Module 11 – Using the Random Forest

- Tuning Random Forests
 - The Bias-Variance Tradeoff
 - Random Forest Hyperparameters
- Feature Importance
 - Out of Bag (OOB) Data
 - Permutation Importance
 - An Example
- Building Random Forests
- Hands-On Lab #4

Module 12 – Workshop Wrap-Up

- Want to Kaggle?
- Additional Resources

Day 3 – Cluster Analysis for Data Science

Module 1: Introduction

- What is Cluster Analysis?
- Cluster Analysis Use Cases
- The Challenge of Clustering Data

Module 2 – Data Sets Used in the Course

- The Iris Data Set
- The Hand-Written Digits Data Set
- The Heart Data Set

Module 3 – Types of Clusterings and Clusters

- Hierarchical, Partitional, and Overlapping Clustering
- Prototype Clusters
- Density-Based Clusters

Module 4 – K-Means Clustering

- Introducing K-Means
- The K-Means Algorithm
- Euclidian Distance
- The Problem with Outliers
- Data Standardization
- K-Means Caveats
- Hands-On Lab #1

Module 5 – Optimizing K-Means

- Evaluating Clusters
- Cluster Cohesion
- Evaluating Cohesion with the Elbow Method
- The Silhouette Coefficient
- Evaluating a Clustering Using the Silhouette Score
- Hands-On Lab #2

Module 6 – DBSCAN Clustering

• Introducing DBSCAN

- The DBSCAN Algorithm
- DBSCAN Caveats

Module 7 – Optimizing DBSCAN

- Considerations for Optimizing DBSCAN
- Calculating min_samples
- Choosing the eps Value
- Introducing Nearest Neighbors
- Evaluating eps Using the Elbow Method
- K-Means vs DBSCAN
- Hands-On Lab #3

Module 8 – Dimensionality Reduction

- Introducing Dimensionality Reduction
- Introducing Principal Component Analysis (PCA)
- PCA Concepts
- Hands-On Lab #4

Module 9 – Categorical Data

- The Problem with Categories
- One-Hot Encoding
- Factor Analysis of Mixed Data (FAMD)

Module 10 – Additional Resources

Hands-On Lab #5