
Managing Active
Directory Users and
Computers with
Powershell
Adam Bertram
PowerShell MVP

Managing Active Directory Users and Computers with Powershell

2© 2015 Veeam Software

Introduction
An organization’s Active Directory (AD) environment often grows and becomes very large to include

thousands of user, computer and group objects. Although AD provides the familiar ADUC (Active

Directory Users and Computers) or Active Directory Administrative Center (ADAC) tools to manage

these thousands of object types, the process can be cumbersome. When large additions or changes

need to be made to AD, ADUC tends to be inconvenient, at best, and downright impossible, at worst.

Windows PowerShell, however, can save the day with its great automation capabilities.

Microsoft has released a PowerShell module for managing AD, which lets an admin manage AD from

a PowerShell command-line interface. By moving the functionality to the command line, an admin

doesn’t have to fool with the GUI (Graphical User Interface) anymore. Instead, this allows the admin

to write automation around AD. This is a very powerful tool that can save organizations with large AD

environments countless man hours managing various AD objects.

In this white paper, you’ll be introduced to managing AD using PowerShell. You’ll learn how to:

• Perform the initial setup

• Manage common AD objects like users, computers and groups

• Restore these objects if they’re removed

Managing Active Directory Users and Computers with Powershell

3© 2015 Veeam Software

Getting started
To get started, you’ll need the AD module installed, regardless of whether it is running locally on a

domain controller or remotely on a domain-joined client. This module is part of a Microsoft software

package called RSAT (Remote Server Administration Tools), which is meant to be installed on client-

operating systems and used to connect remotely to servers. RSAT is available on Windows 7 SP1,

Windows 8.1 and Windows 10.

Once installed, the Windows PowerShell feature Active Directory Module must be enabled in the

Control Panel and the Programs and Features applet.

Once this feature has been turned on, you should see the Active Directory Module for Windows

PowerShell module in your PowerShell console. You can verify this by using the Get-Module

command.

Get-Module -ListAvailable -Name ActiveDirectory

If the module is available, you should see an output similar to this:

Once the module is installed and available, you will be able to begin managing AD with PowerShell!

https://www.microsoft.com/en-us/download/details.aspx?id=7887
https://www.microsoft.com/en-us/download/details.aspx?id=39296

Managing Active Directory Users and Computers with Powershell

4© 2015 Veeam Software

Managing users
Users are the most common AD object type that you’ll manage with PowerShell, which will allow you

to perform just about every function possible in the ADUC GUI.

Finding user accounts

AD accounts are found by using the Get-AdUser cmdlet. This powerful cmdlet provides a much more

robust method of finding user accounts than the ADUC GUI, and it only requires a single parameter:

-Filter. This parameter limits the results returned by Get-AdUser.

At its most basic use, Get-AdUser can be executed with this -Filter parameter followed by an asterisk:

Get-AdUser -Filter*

This would return all user accounts in the entire Active Directory environment. You’re probably not

going to do this too often though. Typically, you’re either looking for a single user account or all user

accounts that match a specific set of criteria.

With Get-AdUser you can find user accounts in several different ways. The easiest way is to simply

search for a single user using the user’s samAccountName. Here’s an example of finding the user

account for jmurphy. By default, you’ll see that Get-AdUser retrieves:

• Which OU that the account is in

• If the account is enabled or not

• The first name and last name

• Other useful information

Feel free to explore Get-AdUser further by using the Get-Help command:

Get-Help Get-AdUser -Full

This command will show you what Get-AdUser is capable performing. If you’d like more flexibility, many

AD module cmdlets also have the ability to query multiple objects through the Filter parameter.

Creating AD user accounts

Managing Active Directory Users and Computers with Powershell

5© 2015 Veeam Software

AD user accounts are created with the New-AdUser cmdlet, which accepts many common user

attributes, but doesn’t actually require a large majority of the attributes taken for granted with the GUI.

For example, here’s a quick way to create a single AD user with a samAccountName of bsmith:

New-ADUser -Name bsmith

Although this process is somewhat simple, what about all the other attributes such as first name, last

name, what OU it has been placed in, password and so on?

As you can see, this account is not very functional because it was created without all of the common

attributes.

Managing Active Directory Users and Computers with Powershell

6© 2015 Veeam Software

Creating useful user accounts requires a little more effort. Once you figure out how it works, however, it

can easily be scripted. Nearly every user attribute has an associated parameter to New-AdUser. For any

attributes that New-AdUser does not directly support, you’ll always have the Add parameter of Set-

AdUser. Here’s an example of creating that same bsmith user account again, except this time you’ll see

that a lot more attributes are used. This is a real-world example:

$NewUserParams = @{

 'UserPrincipalName' = ‘bsmith’

 'Name' = ‘bsmith’

 'GivenName' = ‘Bob’

 'Surname' = ‘Smith’

 'Title' = ‘Accounting Manager’

 'SamAccountName' = ‘bsmith’

 'AccountPassword' = (ConvertTo-SecureString ‘supersecret’ -AsPlainText -Force)

 'Enabled' = $true

 'Initials' = ‘D’

}

New-AdUser @NewUserParams

In the example above, I’m using a technique in PowerShell called splatting, which is a way of providing

cmdlets, like New-AdUser, a lot of parameter in a clean, concise way. You don’t have to use this

technique. You can pass these parameters to New-AdUser with a single line like below, but it would

span 250 characters across the screen. Splatting is a great way to prevent this:

New-AdUser -UserPrincipalName ‘bsmith’ -Name = ‘bsmith’ -GivenName ‘Bob’ -Surname

‘Smith’ -Title ‘Accounting Manager’ -SamAccountName ‘bsmith’ -AccountPassword (ConvertTo-

SecureString ‘supersecret’ -AsPlainText -Force) -Enabled $true -Initials' ‘D’

https://technet.microsoft.com/en-us/library/jj672955.aspx

Managing Active Directory Users and Computers with Powershell

7© 2015 Veeam Software

Removing AD user accounts

Every user account has a useful lifespan, yet sometimes that lifespan ends and the account will need

to be removed. Luckily for us, removing a user account is just about as easy as finding a user account.

Using the PowerShell pipeline, we can simply find the user account and then pass that result to

Remove-AdUser and we’re done.

In the above example, I have a user named miltho. To remove this user, I simply send the results of Get-

AdUser to Remove-AdUser, confirm I really want to remove the user account and then it’s removed.

Managing Active Directory Users and Computers with Powershell

8© 2015 Veeam Software

Managing computers
Computers are managed similarly to users. Rather than using cmdlet names like Get-AdUser and New-

AdUser, computers surprisingly use cmdlet names like Get-AdComputer and New-AdComputer.

These cmdlets’ parameters are also very similar because, a user object and computer object in Active

Directory technically aren’t that different other than the attributes that create them.

Let’s go over a few examples.

Finding computer accounts

To find computer accounts you’ll probably use the Get-AdComputer cmdlet. This cmdlet is similar to

Get-AdUser in that it also has a Filter parameter and behaves exactly the same way.

Using the asterisk, we can now find all computers in AD, thus:

Get-AdComputer -Filter*

Let’s narrow down this search a little and find only computer accounts that are not enabled:

You’ll see that by using the Filter parameter, I can simply perform a conditional statement on the

Enabled attribute and find all computer accounts that have the Enabled attribute set to False.

Managing Active Directory Users and Computers with Powershell

9© 2015 Veeam Software

Modifying existing computer accounts

In addition to finding and creating user and computer accounts with PowerShell, you can also modify

existing accounts using Set cmdlets. A common verb for PowerShell cmdlets for modifying objects

is Set. PowerShell cmdlets are broken down in a Verb-Noun format. You’ll notice that every properly

named cmdlet has some verb, a dash and then a noun. Although not required, it’s considered a good

practice to name your custom functions in this manner. In this example, we can use Set-AdComputer

for modifying existing AD computer accounts.

Using the Set-AdComputer cmdlet is simple. This cmdlet, similar to the New cmdlets, has many

common attributes to the AD object as a parameter. For example, if a computer is moving locations

you’d use the -Location parameter.

NOTE: In the above example, I'm using the -Properties parameter. Even though the Get cmdlets output

common attributes, it doesn’t mean they output all of the object attributes. By utilizing the -Properties

parameter, you will be able to output any of those non-default parameters. In this example, the AD attribute

Location is not a default output attribute, so it had to be manually specified using the -Properties parameter.

Similarly, you can accomplish the same thing by using the PowerShell pipeline to pass the output of

Get-AdComputer directly into Set-AdComputer:

Removing computer accounts

One of the great PowerShell attributes is that cmdlet behavior is nearly identical across similar cmdlets.

The Active Directory module’s cmdlets are no exception. By behaving identically to removing user

accounts, an administrator can also remove computer accounts the exact same way. Although this

time we simply replaced the word User with Computer.

http://blogs.technet.com/b/heyscriptingguy/archive/2014/06/30/back-to-the-basics-part-1-learning-about-the-powershell-pipeline.aspx

Managing Active Directory Users and Computers with Powershell

10© 2015 Veeam Software

Managing groups
Groups are another kind of AD object supported by the PowerShell AD module. Just like users and

computers, you can create, modify and remove groups. Groups contain user and computer objects, as

well as other groups.

As you might expect, the group cmdlets use the same naming scheme and have the same Filter

parameter as users and computer objects. Let’s take the Filter parameter to the next level. This time,

instead of narrowing the results of a Get cmdlet to just one attribute, let’s use two attributes.

You’ll see that the Filter parameter accepts multiple attributes by combining them with the -and

operator. In this example, I am finding all global groups that start with the letters Gig.

The AD module also provides the GroupMember cmdlets: Get-AdGroupMember, Add-

AdGroupMember and Remove-AdGroupMember. These cmdlets allow you to manipulate group

memberships for all types of AD groups.

For example, if you’d like to find all members of the Domain Users group, then you’d use Get-

AdGroupMember:

Get-ADGroupMember -Identity 'Domain Users'

Managing Active Directory Users and Computers with Powershell

11© 2015 Veeam Software

This works great, but isn’t that impressive. What about adding users matching a certain criteria

to a specific group?

In this example, I have added all AD user accounts that are enabled to the My Group AD group. The

same can be done for Remove-AdGroupMember, which will turn around and remove all of the user

accounts that were just added to My Group.

Recovering deleted objects
You should now have all of the user accounts, computers objects and groups created exactly the way

you want them. What if someone then comes along and deletes a critical object from AD? After you get

over the initial shock, it’s time to figure out how to get the object back. There are a few ways to recover

deleted objects from AD that either require using the command line or the GUI. Here, I will discuss how

to recover deleted objects using Windows PowerShell, but will touch upon a free AD recovery tool from

Veeam®, called Veeam Explorer™ for Microsoft Active Directory.

Using Windows PowerShell

Introduced with Windows Server 2008 R2, the AD Recycle Bin is a feature that, instead of completely

removing, simply tags an object as deleted and offers a time when it can be restored.

If you’d like to use the recycle bin and PowerShell you’ll first need to ensure it’s enabled. Unfortunately, this is

not enabled by default. To enable this feature, you’ll need to use the Enable-AdOptionalFeature cmdlet.

Once the feature is enabled, Active Directory will then begin placing objects in the AD Recycle Bin,

rather than simply deleting them.

Once the Recycle Bin is enabled, it’s just a matter of running a restore on an object.

Managing Active Directory Users and Computers with Powershell

12© 2015 Veeam Software

Once the AD object has been deleted, it can only be found using the Get-AdObject cmdlet and the

-IncludeDeletedObjects parameter.

In this example, I removed a user called JoeDav, and by using the Get-AdObject cmdlet with the

-IncludeDeletedObjects parameter, I found it. You’ll also notice it was necessary to use Where-Object here.

I’m used this cmdlet only to find objects that had been deleted. By default, Get-AdObject will find all objects

that still exist and are deleted. Here, I just wanted to find all objects that had been deleted.

Now that the deleted object has been found, I just need to pipe it to the Restore-AdObject and it will

be restored exactly how it was before it was removed.

Using Veeam Explorer for Microsoft Active Directory

Windows PowerShell is very handy, yet it can also cumbersome at times. In addition, some users prefer

to handle tasks like restoring critical AD objects via the GUI. This is a great opportunity to introduce

Veeam Explorer for Microsoft Active Directory, which takes restoring AD objects to a whole new level.

With this tool, you not only have the ability to instantly restore individual objects, but you can also

restore entire OUs (organizational units), user accounts and even a user or Active Directory password,

both individually or in a bulk.

http://www.veeam.com/microsoft-active-directory-explorer.html

Managing Active Directory Users and Computers with Powershell

13© 2015 Veeam Software

Veeam Explorer for Microsoft Active Directory does not require the AD Recycle Bin to be enabled. This

means if you’ve lost one or more objects and didn’t enable the recycle bin, the objects can still be

recovered. This is because Veeam directly mounts a raw AD database.

With Veeam Explorer for Microsoft Active Directory there is no need to restore a VM in a virtual lab.

Instead, an administrator can open the database and explore all the items in the backup by using an

intuitive point-and-click interface. An advanced search option makes the whole process of finding and

restoring many AD object types very easy and fast, even for new users.

Once a required object has been found, an administrator can either export Active Directory objects

and user attributes data from a backup into an LDIFDE format or complete an Active Directory object

restore directly back into the production Active Directory database.

Veeam Explorer for Active Directory was introduced with the Veeam Availability Suite™ v8. To learn more

about its restore possibilities, check out the following free resources:

Active Directory backup and recovery with Veeam

Active Directory basics: Under the hood of Active Directory

Summary
Using Windows PowerShell to manage AD objects is an easy way to create, modify and remove

common AD objects. If you’re new to PowerShell, it may seem a little confusing at first, but the

more you use it, the quicker you’ll notice how much time you can save. Plus, PowerShell is not just a

command prompt replacement as you have seen here, but also a full-featured scripting language that’s

capable of automating much larger AD tasks.

PowerShell allows you to, in a sense, customize the way you manage AD, rather than being forced

to do things the GUI way. Once you’re able to grasp the core concepts, you’ll be well on your way to

developing robust and efficient AD tools written in PowerShell.

http://www.veeam.com/wp-active-directory-veeam.html
http://www.veeam.com/wp-active-directory-basics.html

Managing Active Directory Users and Computers with Powershell

14© 2015 Veeam Software

Adam Bertram is an independent consultant, technical writer, trainer and

presenter. Adam specializes in consulting and evangelizing all things IT

automation mainly focused around Windows PowerShell. Adam is a Microsoft

Windows PowerShell MVP, 2015 powershell.org PowerShell hero and has

numerous Microsoft IT pro certifications. He is a writer, trainer and presenter

and authors IT pro course content for Pluralsight. He is also a regular contributor

to numerous print and online publications and presents at various user groups

and conferences. You can find Adam at adamtheautomator.com or on Twitter

at @adbertram.

About Veeam Software
Veeam® recognizes the new challenges companies across the globe face in enabling the Always-

On Business™, a business that must operate 24/7/365. To address this, Veeam has pioneered a

new market of Availability for the Modern Data Center™ by helping organizations meet recovery

time and point objectives (RTPO™) of less than 15 minutes for all applications and data, through

a fundamentally new kind of solution that delivers high-speed recovery, data loss avoidance,

verified protection, leveraged data and complete visibility. Veeam Availability Suite™, which

includes Veeam Backup & Replication™, leverages virtualization, storage, and cloud technologies

that enable the modern data center to help organizations save time, mitigate risks, and

dramatically reduce capital and operational costs.

Founded in 2006, Veeam currently has 30,500 ProPartners and more than 145,500 customers

worldwide. Veeam's global headquarters are located in Baar, Switzerland, and the company has

offices throughout the world. To learn more, visit http://www.veeam.com.

About the Author

http://adamtheautomator.com
https://twitter.com/adbertram
http://www.veeam.com/data-center-availability-suite.html?ad=pr
http://www.veeam.com/vm-backup-recovery-replication-software.html
http://www.veeam.com

Managing Active Directory Users and Computers with Powershell

15© 2015 Veeam Software

NEW Veeam® Availability Suite™ v9

COMING SOON

RTPO™ <15 minutes for ALL applications and data
Enabling the Always-On Business™

with Availability for the Modern Data Center™

To learn more, visit www.veeam.com

