
What Windows Admins
Need from Configuration
Management

What Windows Admins Need from Configuration Management 2

Table of Contents

Windows Admins and Configuration Management3
What to Look for in a Configuration Management Tool 4
What You Can Actually do With Puppet: Manage Permissions With ACLs 11

ACLs and ACEs ..12
ACL module features12
Getting started ..13
ACL type structure ...14
Examples ..16
Tips for using ACLs ..19

Puppet Makes Windows Administration Easier20
Resources ...21

Acknowledgements Authors: Rob Reynolds and Aliza Earnshaw
Editor: Aliza Earnshaw
With thanks to Alanna Brown, Ethan Brown, Daniel Dreier, Molly Niendorf,
Richard Raseley and Reid Vandewiele

What Windows Admins Need from Configuration Management 3

Windows Admins and Configuration Management

As a Windows systems administrator, you leverage a wide variety of tools to accomplish
your day-to-day tasks and long-term goals. These probably include (but are not limited
to) Active Directory Domain Services, the System Center family of products, PowerShell,
old-school Windows batch scripts, and a myriad of application and function-specific
MMC snap-ins.

While the use of these tools and their associated processes has served you well in
the past, Microsoft’s vision of a “mobile first, cloud first” world suggests we need to
work toward a toolset that supports multiple platforms. As businesses continue to
transition towards more agile and responsive IT and service delivery methodologies
— by adopting DevOps practices, for example — the demands placed upon you, and
consequently your tools, will continue to grow. These demands are difficult enough
for those managing pure Windows environments, but admins managing multiple
platforms — for example, a combination of Windows, Linux and/or OS X, or storage
and network devices in addition to servers — will find it even more challenging.

A lot of Windows admins use PowerShell to automate some of this work. But
PowerShell scripts aren’t portable across other platforms, and they won’t help you
when it comes to managing non-compute resources.

Most people would prefer to simplify, and manage all their systems with a single
configuration management tool, whether Windows servers, systems running on
another OS, or other networked devices. It’s also great if you can track changes easily
for better infrastructure auditing, and store versions of your configurations for easier
rollback when something breaks.

If you’re looking at tools out there in the market to do all this, you probably already
know there are a lot of configuration management choices available. Now you need to
figure out what’s going to work best with your Windows environment.

http://www.zdnet.com/article/microsoft-ceo-satya-nadella-talks-mobile-first-cloud-first/
http://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software

What Windows Admins Need from Configuration Management 4

A declarative approach. A tool
that’s declarative allows you to
describe the end state you want
systems to be in, rather than
describing the process it will take
to get there, which is what a
procedural tool requires of you.

A graphical tool, such as those
commonly used by Windows
admins, executes the steps for
you, resulting in an end state. But
it does not provide a description
of the end state, making it difficult
to automate a task across more
than one machine without manual
intervention.

Reading declarative code tells you
what you can expect the end state
to look like. Contrast that to reading
procedural scripts, where you have
to keep the starting state in your
head, then imagine what will happen
as the steps are executed, to figure
out what the end state will be, once
the script has run. With a graphical
tool, you can’t read a description
ahead of time to know what the end
state will actually be; you just execute
the task. And it’s a one-off; it’s not
repeatable.

Puppet’s domain specific language
is declarative: You write manifests
that describe how your systems
should look, not the steps that
are needed to get there. So you
don’t have to know the specifics of
configuring every piece of software
on servers or other devices: If Puppet
supports it, Puppet will do it. Check
out all the supported platforms for
open source Puppet and for Puppet
Enterprise, and supported network
and storage devices.

Puppet manifests are concise, and
written in language that’s easy for
people outside of operations to
read and understand. That makes
it possible for developers and other
colleagues outside of ops to see
what’s being done in operations, and
even to write their own manifests as
needed. The Puppet language is so
easy to understand, some companies
provide their Puppet manifests to
auditors to demonstrate compliance
with regulatory requirements.

What to look for What Puppet offers

What To Look For in a Configuration Management Tool

https://docs.puppetlabs.com/guides/platforms.html
https://docs.puppetlabs.com/guides/platforms.html
https://docs.puppetlabs.com/pe/latest/install_system_requirements.html#operating-system
https://docs.puppetlabs.com/pe/latest/install_system_requirements.html#operating-system
http://puppetlabs.com/about/press-releases/puppet-labs-partners-leading-vendors-deliver-automation-networking-and-storage
http://puppetlabs.com/about/press-releases/puppet-labs-partners-leading-vendors-deliver-automation-networking-and-storage

What Windows Admins Need from Configuration Management 5

Declarative tools have another
advantage over graphical-interface
tools: They allow you to treat
infrastructure as code. That means
you are defining the desired state
of your infrastructure in a form that
can be treated exactly like any other
code:
It can be shared with others outside
the ops team who may need to
manage machines, but don’t know
the exact steps for doing that; and it
can be checked into a version control
tool, just like any other artifact of
your software development and
maintenance pipeline. (See more on
infrastructure as code below.)

The declarative approach is
especially useful when you’re looking
to enhance collaboration between
teams. Developers, for example, can
configure test servers for themselves,
without needing to know the details
of how it’s done. The same thing
goes for your quality engineers.

Pre-written modules >>

What Windows Admins Need from Configuration Management 6

You can choose from about 3,000
Puppet modules to automate your
admin tasks, including a wide variety of
modules written specially for Windows.
Among these, you’ll find modules that
are fully supported for use with Puppet
Enterprise, including:

• puppet-registry for managing keys
and values in the Registry

• puppetlabs-reboot for managing
reboots of Windows systems

• puppetlabs-powershell for
executing PowerShell commands
on Puppet-managed systems

• puppetlabs-sqlserver for installing
and managing MS SQL

• puppetlabs-acl for managing ACLs
(find detailed examples for using
this module in the section below)

• windows_feature for turning features
on or off for Windows Server

• download_file for downloading files
to use on Windows server

Puppet Enterprise customers get
support from Windows administration
experts not only for Puppet itself, but
also for all Puppet Supported modules.
You’ll also find Puppet Approved
modules designed for Windows
— modules created by Puppet
community members that have been
approved by Puppet Labs as properly
designed, regularly maintained and
well-documented.

Pre-written modules. Look for
a system that is highly extensible,
with many widely used and tested
Windows-specific modules for
common admin tasks, such as
installing Windows features,
configuring file permissions,
managing Registry settings and
more. It should also have modules
for other operating systems and
platforms that you currently manage,
and also those you don’t. The future
is unpredictable: You may not be
managing specific platforms now,
but as business requirements
change, you could end up managing
them. It’s a lot less work to position
yourself for the future now, versus
re-architecting later.

What to look for What Puppet offers

https://forge.puppetlabs.com/modules?utf-8=%E2%9C%93&sort=rank&q=windows
https://forge.puppetlabs.com/puppetlabs/registry
https://forge.puppetlabs.com/puppetlabs/reboot
https://forge.puppetlabs.com/puppetlabs/powershell
https://forge.puppetlabs.com/puppetlabs/sqlserver
https://forge.puppetlabs.com/puppetlabs/acl
https://forge.puppetlabs.com/opentable/windows_feature
https://forge.puppetlabs.com/opentable/download_file
https://puppetlabs.com/services/customer-support
https://puppetlabs.com/services/customer-support
https://forge.puppetlabs.com/modules?endorsements=supported
https://forge.puppetlabs.com/modules?endorsements=supported

What Windows Admins Need from Configuration Management 7

Community. There should also be a
big, active community of users who
create, test and discuss modules and
use cases. You’ll want a community
to turn to, and you want a system
that’s established and still growing,
to protect your investment into the
future.

Cost efficiency. You shouldn’t
have to add a lot of expensive
hardware plus licenses to use your
configuration management tool. It
should be easy and lightweight to
install, and you should be able to
manage potentially hundreds of
servers from a small footprint.

The Puppet community has been
around for about a decade, and
is continually growing. Puppet
users are in all industries, and in
government, education and
nonprofits around the world. Many
of the most useful modules on
the Puppet Forge were written by
community members, and even
more people can be found actively
helping others learn and solve
problems in online groups and blogs
and at Puppet Camps and meetups.

Puppet is cost-effective, both in
terms of hardware and licensing
costs. You can start with just a
single server to get Puppet up and
running in your environment, and
grow only as you choose to expand
the number of servers and other
resources managed by Puppet.
Organizations using Puppet to
manage their infrastructure range
from fewer than 100 machines to
hundreds of thousands of nodes
managed by Puppet.

What to look for What Puppet offers

http://puppetlabs.com/community/puppet-camp
https://docs.puppetlabs.com/pe/latest/install_system_requirements.html
https://docs.puppetlabs.com/pe/latest/install_system_requirements.html

What Windows Admins Need from Configuration Management 8

Ability to enable other teams.
Your configuration management
tool should make it easier for you to
refine resource access for different
users, so you can give other teams
(such as software development and
quality engineering) access to the
resources they need, in accordance
with your internal policies — without
having to go through ops every time.

Puppet Enterprise allows you
to determine access by user role,
so it’s much easier for you to give
other teammates the ability to
service their own infrastructure
needs (in accordance with your
organization’s policies), without
having to go through Ops every
time. You can give people what they
want while freeing up your own time
— a win for everyone.

What to look for What Puppet offers

Ability to manage infrastructure as code >>

What Windows Admins Need from Configuration Management 9

Ability to manage infrastructure
as code. Your configuration
management tool should allow you
to manage your infrastructure as
code. You should be able to check
your configuration files into a version
control system, the same way
developers do to manage software
development. There are some big
advantages to adopting this approach:

• It’s a lot easier for you and your ops
colleagues to know quickly what
everyone is doing, and to cover for
each other when someone’s out.

• It increases your confidence
in your changes, because once
you’re using configuration
management and version control,
you know you can easily audit
your configurations; view the
diffs between configurations;
and quickly and easily roll back
to the last known good state
when needed.

• It’s much easier to collaborate
with your colleagues in software
development, testing and quality
assurance, which in turn makes
it easier for the technical teams
to align with the organization’s
business strategy.

Puppet manifests are text files,
so you can check them into a
version control tool, just like any
code. That allows you to audit your
infrastructure, roll back to the last
known good change, and easily share
information with colleagues on other
teams in your organization.

What to look for What Puppet offers

Support for platforms beyond Windows >>

What Windows Admins Need from Configuration Management 10

Support for platforms beyond
Windows. More and more IT
organizations have to manage multi-
platform, multi-cloud environments.
Even if you aren’t there yet,
technology moves so fast that it
may not be long before the next big
initiative drives big change in your
organization. You want to be the one
leading that change, not one of those
struggling to keep up.

You can use Puppet to configure
all your servers, whether they’re
running on Windows, Mac OS X,
Linux or another variety of Unix.
The same manifests will work across
all platforms, saving you time and
trouble. You can also use Puppet
to configure network and storage
devices, so you’ll be reading and
writing manifests in the same
language when you work with these
resources — less context-switching,
so less disruptive to your workflow.

What to look for What Puppet offers

What you can actually do with Puppet >>

What Windows Admins Need from Configuration Management 11

While there is a simple interface for setting permissions on Windows, managing and
maintaining permissions has never been simple. Puppet has a module that makes
working with permissions much easier. You can work directly with ACLs (Access Control
Lists) and to a degree, security descriptors, through the puppetlabs-acl module. While
the ACL module makes managing permissions easier, it still satisfies admins who need
to work with very advanced permissions.

The ACL module became a Puppet Enterprise supported module as soon as it was re-
leased in May 2014, and works with Puppet Enterprise 3.2+ (and open source Puppet
3.4.0+). The module adds a type and provider for Windows so you can manage those
pesky permissions without a ton of hassle.

Let’s talk about a couple of real-world scenarios:
• You need to set permissions appropriately for something like IIS/Apache.
• You have a directory or file that you need to lock down to just admins.

These are very doable with the ACL module and just a few short lines of Puppet code.
We’ll show you that in the Examples section below, but first let’s talk about ACLs and
ACEs for those who want a refresher.

ACLs and ACEs
ACLs (also called Discretionary Access Control Lists) typically contain a list of access
control entries (ACEs). An ACE is a defined trustee (identity) with a set of rights, and
information about how those rights are passed to (and inherited by) child objects
— for example, files and folders. For each ACE, the ACL contains an allowed/denied
status, as well as the ACE’s propagation strategy. You cannot specify inherited ACEs
in a manifest; you can only specify whether to allow upstream inheritance to flow into
the managed target location (the location where you are applying the ACL).

What You Can Actually do With Puppet:
Manage Permissions With ACLs

https://forge.puppetlabs.com/puppetlabs/acl
https://forge.puppetlabs.com/supported
http://msdn.microsoft.com/en-us/library/cc246052.aspx
http://msdn.microsoft.com/en-us/library/ms229747.aspx

What Windows Admins Need from Configuration Management 12

ACL module features
Here are some features of Puppet’s ACL module you should know:
• Puppet can manage the complete set of ACEs or ensure that some Puppet-specified

entries are present, while leaving existing entries alone.
• You can lock down a path to only the specified permissions.
• Identities can be users and/or groups, domain users/groups, and/or SIDs.
• You can point multiple ACL resources at the same target path.
• Propagation and inheritance of ACEs is set to Windows defaults, but can be specified

per ACE.

Here’s what sets Puppet’s ACL module apart from other configuration
management tools:
• ACE order. The order of your ACEs matters. If they are incorrectly ordered, it can

cause issues. Puppet will apply ACEs in the order you’ve specified in the manifest.
And we insert them in the correct location when merging with unmanaged ACEs.

• SID (Security ID) support. We support specifying identities as SIDs.
• Very, very granular permissions. Do you need to apply read attributes (RA)? Yes,

we can do that.

Getting started
Let’s take a look at what a typical ACL resource looks like:

acl { ′c:/temp′:
 permissions => [
 { identity => ′Administrator′, rights => [′full′] },
 { identity => ′Users′, rights => [′read′,′execute′] }
],

}

If you were to run the above on a system that had the module installed, you would be
giving the Administrator account full access to the temp folder, and giving the Users
group access to read and execute (and list for folders). All the other options are set
to Windows defaults, but if we need to get to them, we can. Let’s look at that same ACL
resource with all the options specified:

What Windows Admins Need from Configuration Management 13

acl { ′c:/temp′:
 target => ′c:/temp′,
 target_type => ′file′,
 purge => ′false′,
 permissions => [
 { identity => ′Administrator′, rights => [′full′], type=> ′allow′,
child_types => ′all′, affects => ′all′ },
 { identity => ′Users′, rights => [′read′,′execute′], type=> ′allow′,
child_types => ′all′, affects => ′all′ }
],
 owner => ′Administrators′,
 group => ′Users′,
 inherit_parent_permissions => ′true′,
}

We have just defined a resource with all parameters and properties specified; what you
are seeing is how the defaults line up. The only exceptions here are owner and group,
which by default are not managed unless specified. The defaults for these depend on
the user that created the target (the folder) and could be different based on who the
user has as their default group and owner.

• With both of the above examples we have done the following:
• We’ve given Administrator full access to c:\temp.
• We’ve given Users read/execute access to c:\temp.
• We are by default not removing explicit unspecified permissions (purge => ′false′).
• We are by default inheriting the permissions from the parent folder

(inherit_parent_permissions =>′true′).
• For each ACE, we are allowing the permission by default (type =>′allow′).
• For each ACE, we apply the permission to all child types by default, both folders

and files (child_types =>′all′).
• For each ACE, we propagate the permission to self, direct children and all those

further down by default (affects => ′all′). Note that all types below child types
are called grandchildren, no matter what the level of depth.

By default, if a user is not granted access through an ACE (whether individually or
as a member of a group), then Windows will deny access. So if a user is not the
Administrator account and not a member of the Users group, they will not have
access to c:\temp. With the ACL module, this also means that access could be granted
outside of Puppet (when purge => ′false′) and/or it is an inherited ACE (when
inherit_parent_permissions => ′true′).

http://msdn.microsoft.com/en-us/library/Windows/desktop/aa446683.aspx

What Windows Admins Need from Configuration Management 14

ACL type structure
Now let’s take a look at the ACL type and all it has to offer.

Parameters
The parameters are (bold means the parameter is required):
• name - The name of the ACL resource, used as target if target is not set explicitly

(see the target parameter).
• purge - Determines whether unmanaged explicit access control entries should be

removed. Combine purge => ′true′, inherit_parent_permissions =>′false′
to really lock down a folder. Supports true, false and listed_permissions.
Defaults to false.

• target - The location; defaults to the same value as name.
• target_type - Currently supports only file; defaults to file.

Properties
The properties are (bold means the property is required):
• permissions - The list of ACEs as an array. This should be in the order you want

them applied. We cover permissions in more detail below.
• owner - User/Group/SID that owns the ACL. If not specified, the provider will not

manage this value.
• group - User/Group/SID that has some level of access. If not specified, the provider

will not manage this value. Group is not commonly used on Windows.
• inherit_parent_permissions - Whether we inherit permissions from parent ACLs

or not. Default is true.

What Windows Admins Need from Configuration Management 15

Permissions property
The permissions property could be considered the most important part of the ACL
resource, because it contains each ACE in the order specified for the ACL. The available
elements for each ACE hash are identity, rights, type, child_types, affects, and
mask.

The elements are (bold means the key is required):
• identity - This is the user/group/SID.
• rights - An array with the following values: full, modify, mask_specific, write, read,

and execute. The full, modify, and mask_specific values are mutually exclusive, and
when any of these values are used, they must be the only value specified in rights.
The full value indicates all rights. The modify value is cumulative, implying write,
read, execute and DELETE all in one. If you specify mask_specific, you must also
specify the mask element in the permissions hash. The write, read, and execute
values can be combined however you want.

• type - Whether to allow or deny the access. Defaults to allow.
• child_types - Which types of children are allowed to inherit this permission, whether
objects, containers, all or none. Defaults to all.

• affects - How inheritance is propagated. Valid values are all, self_only, children_
only, self_and_direct_children_only, or direct_children_only. Defaults to all.

• mask - An integer representing access mask, passed as a string. Mask should be used
only when paired with rights => [′mask_specific′]. For more information on mask,
see the granular permissions example below.

For more specific details and up-to-date information on the ACL type, see the usage
documentation.

http://msdn.microsoft.com/en-us/library/aa394063.aspx
https://forge.puppetlabs.com/puppetlabs/acl#usage
https://forge.puppetlabs.com/puppetlabs/acl#usage

What Windows Admins Need from Configuration Management 16

Examples
In the following examples we are going to show you how to lock down a folder, set
appropriate permissions for a website, and set very granular permissions.

Locking down a folder for sensitive data
Here’s what you need to do when you keep sensitive data in a specific folder, and need
to limit access to administrators only.

acl { ′c:/sensitive_data′:
 purge => true,
 inherit_parent_permissions => false,
 permissions => [
 { identity => ′Administrators′, rights => [′full′] }
],
}

We’ve done the following:
• Since permissions are inherited from parent ACLs by default, we set inherit_
parent_permissions => false so no permissions are inherited from the parent ACL.

• ACLs will also allow unmanaged ACEs to coexist with Puppet-managed permissions,
so we need to specify purge => true to ensure that all permissions other than those
we have specified are removed.

• We’ve given the Administrators group full permission to the directory.
• If an ACE has not granted permission for a user, Windows will by default deny
access. So in this case, only users that are part of the Administrators group will
be able to access this folder.

That was pretty simple! And very self-documenting as well. It’s worth mentioning that
one goal of Puppet is for anyone to be able to read and understand the intent of the
code, and the ACL module does not disappoint. Now let’s try something a little more
involved.

What Windows Admins Need from Configuration Management 17

Website setup with ACLs
Let’s take a look at setting up an IIS site and locking down permissions.

$website_location = ′C:\sites\thestuff′
$website_name = ′the.stuff′
$website_port = ′80′

add windows features
windowsfeature { ′Web-WebServer′:
 installmanagementtools => true,
} ->
windowsfeature { ′Web-Asp-Net45′:
} ->

remove default web site
iis::manage_site { ′Default Web Site′:
 ensure => absent,
 site_path => ′any′,
 app_pool => ′DefaultAppPool′,
} ->

application in iis
iis::manage_app_pool { ″${website_name}″:
 enable_32_bit => true,
 managed_runtime_version => ′v4.0′,
} ->

iis::manage_site { ″${website_name}″:
 site_path => $website_location,
 port => ″${website_port}″,
 ip_address => ′*′,
 app_pool => ″${website_name}″,
} ->

lock down web directory
acl { ″${website_location}″:
 purge => true,
 inherit_parent_permissions => false,
 permissions => [
 { identity => ′Administrators′, rights => [′full′] },
 { identity => ′IIS_IUSRS′, rights => [′read′] },
 { identity => ′IUSR′, rights => [′read′] },
 { identity => ″IIS APPPOOL\\${website_name}″, rights => [′read′] }
],
} ->

acl { ″${website_location}/App_Data″:
 permissions => [
 { identity => ″IIS APPPOOL\\${website_name}″, rights => [′modify′] },
 { identity => ′IIS_IUSRS′, rights => [′modify′] }
],
}

http://www.iis.net/

What Windows Admins Need from Configuration Management 18

The script above does the following:
1. Ensures IIS is installed and ASP.NET is set up.
2. Ensures the default web site is removed.
3. Ensures our site is set up correctly.
4. Uses ACL to ensure IIS users have read access.
5. Uses ACL to ensure the processes that run the website can modify

the App_Data directory.

All of that, done in just a few lines of code! You can add more for getting the files there
in the first place, using Puppet, but we have left that as an exercise for the reader.

Granular permissions
In our last example, let’s get into very granular permissions.

acl { ′c:/granular_permissions′:
 permissions => [
 { identity => ′Administrators′, rights => [′full′] },
 { identity => ′Bob′, rights => [′mask_specific′], mask => ′1507839′ }
],
}

We’ve done the following:
• We’ve given the Administrators group full permission to the directory.
• We’ve given the user Bob permission to modify, plus WRITE_DAC (the ability to modify

the discretionary access control list, or make changes to the ACL) and FILE_DELETE_
CHILD (the ability to delete all children, including read-only files). Bob now has almost
full permissions, except we have not given this user the ability to modify the owner of
the ACL.

So you see 1507839 and it looks like a magic number. How does one arrive at this
number? See this blog post that shows you how to add up the numbers. Now we have
a much simpler way to add those permissions: We have created and made available
a worksheet to add up the ACL rights mask! This will allow you to add up the rights and
will give you a heads up if you should use named rights from the module (like read
or execute or a combination of read, execute).

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379607.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379607.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/gg258116.aspx
http://ferventcoder.com/archive/2014/07/09/puppet-aclsndashmask-specific.aspx
http://links.puppetlabs.com/aclmaskaddition

What Windows Admins Need from Configuration Management 19

Tips for using ACLs
Here are some tips to consider when using ACL:
• If you are specifying an ACL, please ensure you don’t set mode on file resources.
• Don’t use fully qualified names except when using domain accounts. When identities

(users) are local-machine specific, don’t fully qualify the name (e.g., Machine-Name\
Administrator), as that doesn’t translate well to multiple machines with different
names.

• Avoid SIDs unless you need them. When ACLs attempt to set dependencies on user
resources, the ACL module will go with a fully qualified user name, which you won’t
usually want to put into manifests (e.g., Machine-Name\Administrators), unless you
are specifying domain accounts.

• Don’t use Windows 8.3 short file names. (1980 just called.)
• Unicode identities don’t work yet. This is due to a bug in Puppet, and will be fixed

in future versions of Puppet.
• ACEs are checked for uniqueness based on identity, type, child_types, and
affects. Don’t differ based on rights alone. It will confuse the provider.

https://tickets.puppetlabs.com/browse/PUP-2397

What Windows Admins Need from Configuration Management 20

Windows admins in all industries, in organizations ranging from small startups to
Fortune 100 companies with huge web operations, are using Puppet to do their work
more efficiently and collaborate better with their colleagues. For Windows admins,
Puppet offers some compelling benefits over other configuration management tools:

• It’s easy to use, once you learn the Puppet DSL (and we find most Windows admins
learn it quickly).

• Puppet has been used by system administrators for almost a decade, and is used to
manage infrastructure in more than 20,000 companies worldwide, from tiny startups
to large companies like Google, ADP, PayPal, Sony and many more. More Windows
admins adopt Puppet every year, and Windows modules are among the most-
downloaded modules on the Puppet Forge.

• Patch Tuesday doesn’t have to be painful; Puppet helps you build test
environments that are exactly like production, then roll out updates
in a controlled and auditable way.

• You’ll find many pre-built, extensively tested modules for managing your admin
tasks on the Puppet Forge. We’ve even made it easy for you to search for Windows-
compatible modules, for Puppet Enterprise supported modules, and for modules
that have met the Puppet Labs standards for Approved status. All these lists are
continually growing.

• The Puppet community is large, growing and includes many Windows admins who
enjoy discussing (and helping others with) the challenges of automating Windows
and mixed environments.

• Puppet Labs offers specialized support for Windows admins.
• On the Puppet Labs website, you’ll find a huge trove of learning resources, including

special training and introductory courses for Windows admins who have not yet used
Unix, the vim text editor or Git and GitHub (tools that are commonly used by Unix
sysadmins).

• You’ll have the ability to support DevOps and continuous delivery initiatives in your
company.

Puppet Makes Windows Administration Easier

http://puppetlabs.com/about/customers
https://forge.puppetlabs.com/
https://forge.puppetlabs.com/modules?utf-8=%E2%9C%93&sort=rank&os=windows
https://forge.puppetlabs.com/modules?utf-8=%E2%9C%93&sort=rank&os=windows
https://forge.puppetlabs.com/modules?endorsements=supported
https://forge.puppetlabs.com/modules?endorsements=approved
https://forge.puppetlabs.com/modules?endorsements=approved
http://ask.puppetlabs.com/questions/scope:all/sort:activity-desc/page:1/query:windows/
https://puppetlabs.com/learn
https://puppetlabs.com/services/training/puppet-essentials-windows
https://puppetlabs.com/learn/library/tools

What Windows Admins Need from Configuration Management 21

• Learn how .NET shop IP Commerce uses Puppet Enterprise with GitLab, Jira, Bamboo
and MySQL for its continuous delivery system. If you want even more details about
the company’s continuous delivery workflow, you’ll probably enjoy application
architect Jason Moorehead’s blog post.

• Here’s an excellent discussion of the Desired State Configuration (DSC) tool in
Powershell. Look for the interesting comment by Rich Siegel — it was the first, so is at
the bottom of the post page.

• In case we haven’t linked it enough already, here’s the Puppet ACL module.
• Good documentation on how permissions work in Windows Server.
• Access rights and access masks
• File generic access rights
• Access mask format
• ACL access mask rights addition worksheet

If you haven’t tried out Puppet Enterprise yet, you can
download and try it out for free. Do it now! And let us know
how we can help you — there are many ways you can get
answers to your questions: at ask.puppetlabs.com, in the
Puppet Users group, plus more at the Puppet Labs page
on GitHub. And of course, there’s always our extensive
documentation to consult.

Resources

http://puppetlabs.com/customers/case-studies/ip-commerce-continuous-delivery-with-puppet-enterprise-in-dot-net-environment
http://puppetlabs.com/customers/case-studies/ip-commerce-continuous-delivery-with-puppet-enterprise-in-dot-net-environment
http://puppetlabs.com/blog/continuous-delivery-net-shop-puppet-enterprise
http://powershell.org/wp/2014/05/14/why-puppet-vs-dsc-isnt-even-a-thing/
http://powershell.org/wp/2014/05/14/why-puppet-vs-dsc-isnt-even-a-thing/
https://forge.puppetlabs.com/puppetlabs/acl
http://technet.microsoft.com/en-us/library/cc783530.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374902.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364399.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374896.aspx
http://links.puppetlabs.com/aclmaskaddition
http://puppetlabs.com/download-puppet-enterprise
http://ask.puppetlabs.com

