AI: Expectations and Realities

Dr. William Scherlis Director, Information Innovation Office

March 2020

Distribution Statement A: Approved for Public Release, Distribution Unlimited.

DARPA Achievements

Information Innovation Office (I2O)

The first mouse

Foundations of artificial intelligence

Foundations for advanced ICs

Advantage in **cyber operations**

Resilient, adaptable, and **secure systems**

Artificial intelligence to the mission

Confidence in the **information domain**

Information Innovation Office (I2O)

Advantage in cyber operations

RADICS

• Black start recovery of the power grid during a cyber attack

Resilient, adaptable, and secure systems

OPS-5G

- Open Hardware/software decoupling
- *Programmable* Configure to the mission
- Secure Trust and security

OPS-5G

Open Non-US US Source HW HW

HW

AI to the mission

Assured Autonomy

- Explain
- Analyze/assure UUV

Function & safety cases

... $(n = 5 + m) \vee (p \wedge \neg q) ...$

SMT: Satisfiability modulo theories

Confidence in the information domain

Media Forensics (MediFor)

• *Images/video* – Deep fakes

Semantic Forensics (SemaFor)

• *Multi-modal* – False narratives

Hard problems in AI

Machine learning: fragility, opacity, and dynamism

- How do we engineer systems to safely deliver AI to the mission?
- How do we harmonize domain models with AI techniques?
- How can humans best partner with AI-enhanced systems?
- What are successful models for continuous delivery, continuous integration and continuous verification for AI?
- What is next generation AI beyond symbolic and machine learning (waves 1 and 2 have shown their limits)?

- 1. Today's adversaries (2+N) are capable and nimble
- We must be able to continuously engineer at the margin – propelled by rapidly evolving threat and accelerating benefit from AI and computing
- 3. The technologies of I2O enable both defense and offense, with complex equities
- 4. With AI, human-machine partnering becomes more challenging

I2O Thrust Areas: **Artificial intelligence** to the mission Advantage in **cyber operations** Resilient, adaptable, and **secure systems** Confidence in the **information domain**

Context

• Specialized cognitive building blocks: perception, reasoning, action

Approach

- Hybrids methods
 - Machine learning + game theory + optimization
 - Machine learning + explicit reasoning
- Infrastructure: Computing and data handling
- Looking ahead: Self adaptation learning to learn

I2O Programs

- Communicating with Computers (CwC)
- Computers and Humans Exploring Software Security (CHESS)
- Explainable AI (XAI)
- Learning with Less Labeling (LwLL)
- Machine Common Sense (MCS)
- Synergistic Discovery and Design (SD2)

Machine Common Sense

Frame specialized AI using common sense reasoning

Enable AI applications to

- understand new situations,
- monitor the reasonableness of their actions
- transfer learning to new domains
- communicate more effectively with people

Context

- Emerging AI-enabled mission concepts
- Adversaries are nimble and capable
- Human-AI partnering remains difficult
- Talent pool is a challenge

Approach

- Close partnering of operators and engineers
- Start with advisory AI

I2O Programs

- Active Interpretation of Disparate Alternatives (AIDA)
- Artificial Social Intelligence for Successful Teams (ASIST)
- Explainable AI (XAI)
- Knowledge-directed AI Reasoning Over Schemas (KAIROS)
- Media Forensics (MediFor)
- Semantic Forensics (SemaFor)

Knowledge-directed AI Reasoning Over Schemas (KAIROS)

Contextual and temporal reasoning

Create schema-based artificial intelligence capability to enable contextual and temporal reasoning about complex real-world events

[3] Engineering systems with embedded AI

Context

• Software and systems engineering are made more challenging with AI

Approach

- Adapt key aspects of the engineering process
 - Integration frameworks, planning, and design
 - Process, tooling, and measurement
 - Assurance and evidence
 - Data, systems infrastructure, and configurations

Explainable AI

Techniques to learn more structured, interpretable, causal models

Techniques to learn more explainable features

Techniques to infer an explainable model from any model as a black-box

Explain second wave AI

Enable human users to understand, trust, and effectively manage the emerging generation of AI partners

I2O Programs

Assured Autonomy (AA)

• Explainable AI (XAI)

Symbiotic Design for Cyber Physical Systems (SDCPS)

Context

- Machine learning fragility, opacity, and dynamism
- Adversaries empowered in new ways, including attacking conventional systems
- Assurance influences all aspects of engineering and design, from the outset

Approach

- Integrate assurance planning
- Manage evidence to support confident
 accreditation decisions

Guaranteeing AI Robustness against Deception (GARD)

Design robust and resilient AI models

Enable machine learning systems to be robust against adversary deception

I2O Programs

- Explainable AI (XAI)
- Guaranteeing AI Robustness against Deception (GARD)
- Media Forensics (MediFor)
- Semantic Forensics (SemaFor)

www.darpa.mil