

 TDWI. All rights reserved. Reproductions in whole or in part are prohibited except by written permission. DO NOT COPY.

Previews of TDWI course books offer an opportunity

to see the quality of our material and help you to select

the courses that best fit your needs. The previews

cannot be printed.

TDWI strives to provide course books that are content-

rich and that serve as useful reference documents after

a class has ended.

This preview shows selected pages that are

representative of the entire course book; pages are not

consecutive. The page numbers shown at the bottom of

each page indicate their actual position in the course

book. All table-of-contents pages are included to

illustrate all of the topics covered by the course.

2

3

4

Fractals
Fractals are geometric shapes that are very complex and infinitely detailed. You can zoom in on a
section and it will have just as much detail as the whole fractal. They are recursively defined and
small sections of them are similar to large ones. One way to think of fractals for a function f(x) is to
consider x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x)))), etc. Fractals are related to chaos because they are
complex systems that have definite properties.

5

7

8

12

14

21

22

26

32

33

39

40

41

43

52

53

59

60

64

65

66

69

75

76

77

78

79

84

85

Watson – the computer system we developed to play Jeopardy! is based on the DeepQA softate
archtiecture. Here is a look at the DeepQA architecture. This is like looking inside the brain of the
Watson system from about 30,000 feet high.

Remember, the intended meaning of natural language is ambiguous, tacit and highly contextual. The
computer needs to consider many possible meanings, attempting to find the evidence and inference
paths that are most confidently supported by the data.

So, the primary computational principle supported by the DeepQA architecture is to assume and
pursue multiple interpretations of the question, to generate many plausible answers or hypotheses
and to collect and evaluate many different competing evidence paths that might support or refute
those hypotheses.

Each component in the system adds assumptions about what the question might means or what the
content means or what the answer might be or why it might be correct.

DeepQA is implemented as an extensible architecture and was designed at the outset to support
interoperability.

<UIMA Mention>

For this reason it was implemented using UIMA, a framework and OASIS standard for interoperable
text and multi-modal analysis contributed by IBM to the open-source community.

Over 100 different algorithms, implemented as UIMA components, were integrated into this
architecture to build Watson.

88

91

92

93

97

100

101

106

Interactive performance of execution engine
Code generation for operators (similarly to Impala)
Data is pipelined MPP-style
Runs at Facebook scale
Capable of querying other non-HDFS data stores as well

108

Notes from https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-
petabytes-of-data-at-facebook/10151786197628920
The diagram below shows the simplified system architecture of Presto. The client sends SQL to
the Presto coordinator. The coordinator parses, analyzes, and plans the query execution. The
scheduler wires together the execution pipeline, assigns work to nodes closest to the data, and
monitors progress. The client pulls data from output stage, which in turn pulls data from
underlying stages.
The execution model of Presto is fundamentally different from Hive/MapReduce. Hive
translates queries into multiple stages of MapReduce tasks that execute one after another. Each
task reads inputs from disk and writes intermediate output back to disk. In contrast, the Presto
engine does not use MapReduce. It employs a custom query and execution engine with
operators designed to support SQL semantics. In addition to improved scheduling, all processing
is in memory and pipelined across the network between stages. This avoids unnecessary I/O
and associated latency overhead. The pipelined execution model runs multiple stages at once,
and streams data from one stage to the next as it becomes available. This significantly reduces
end-to-end latency for many types of queries.
The Presto system is implemented in Java because it’s fast to develop, has a great ecosystem,
and is easy to integrate with the rest of the data infrastructure components at Facebook that
are primarily built in Java. Presto dynamically compiles certain portions of the query plan down
to byte code which lets the JVM optimize and generate native machine code. Through careful
use of memory and data structures, Presto avoids typical issues of Java code related to memory
allocation and garbage collection.

110

The client sends SQL to the Presto coordinator node. The coordinator in this case
determines there are operations needed from more than just Hive data.
•A coordinator (a master daemon) uses connectors to get metadata (such as table schema)
that is needed to build a query plan. Workers use connectors to get actual data that will be
processed by them.
Presto supports pluggable connectors that provide metadata and data for queries. The Hive
connector supports Text, SequenceFile, RCFile, ORC and Parquet (?) formats.
Presto does NOT access the Hive server or Hive. It accesses Hive tables in HDFS. The
graphic is kept simple but the details are not so simple.

111

Hive tables and HCatalog

Apache Cassandra

Apache Kafka

Kafka topics = Presto tables,

messages = rows

MySQL

Single node access only -- no sharding

Postgres

Single node access only

112

	2017 Onsite Eval use.pdf
	Untitled
	Untitled

