EAWi

Transforming Data
With Intelligence™

Previews of TDW!I course books offer an opportunity
to see the quality of our material and help you to select
the courses that best fit your needs. The previews
cannot be printed.

TDWI strives to provide course books that are content-
rich and that serve as useful reference documents after
a class has ended.

This preview shows selected pages that are
representative of the entire course book; pages are not
consecutive. The page numbers shown at the bottom of
each page indicate their actual position in the course
book. All table-of-contents pages are included to
Illustrate all of the topics covered by the course.

© TDWI. All rights reserved. Reproductions in whole or in part are prohibited except by written permission. DO NOT COPY.

This page intentionally left blank.

Machine & Deep Learning:
Delivering Insights from Big Data

You Will Learn

* The foundations of machine learning in chaos theory, game theory,
and algorithms

* What “machine talk” is and how we architect for it

* How to bring search implementation theory to data with deep
learning

* Introduction to TensorFlow, a library of open source algorithms

* Implementing machine and deep learning, including what processing
techniques are involved

* Available analytics insights, outcomes, mashups, and KPIs
* How to visualize the results of machine and deep learning

Chaos Theory

Chaos Theory

Chaos theory has been defined as the science that determines order in the
randomness and unpredictability that exist in the natural and social systems

Ex: coastlines, mountains, clouds, galaxy clusters, leaves, heart rhythms,
etc.

Chaos theory underlying principles
. Non-linearity
. Determinism
Sensitivity to initial conditions
Sustained irregularity in the behavior of the system
Unpredictable long-term behavior
+ Self-organization
Positive feedback loops
Qualitative character of systems rather than numerical predictions of future states
Unstable
Aperiodic — no periodic repetition of values

Characteristics of Systems

System Order Chaos Randomness
Paradigmatic Clocks, Clouds, Snowon TV
Example Planets Weather Screen
Predictability Very High Finite, None, Simple
Short Term Laws
Effect of Small Very Small Explosive Nothing BUT
Errors Errors
Spectrum Pure Yes! Noisy,
Broad
Dimension Finite Low Infinite
Control Easy Tricky, Very Poor
Effective
Attractor Point, Cycle, Strange, Fractal No!
Torus

Fractals

Fractals are geometric shapes that are very complex and infinitely detailed. You can zoom in on a
section and it will have just as much detail as the whole fractal. They are recursively defined and
small sections of them are similar to large ones. One way to think of fractals for a function f(x) is to
consider x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x)))), etc. Fractals are related to chaos because they are
complex systems that have definite properties.

Game Theory

Game Theory

* Any situation in which individuals must make strategic choices and in
which the final outcome will depend on what each person chooses to
do can be viewed as a game.

* Game theory models seek to portray complex strategic situations in a
highly simplified setting.
* All games have three basic elements:
* Players
* Strategies
* Payoffs

* Players can make binding agreements in cooperative games, but can
not in noncooperative games, which are studied in this chapter.

Equilibrium Concepts

* In the theory of markets an equilibrium occurred when all parties to
the market had no incentive to change his or her behavior.

* When strategies are chosen, an equilibrium would also provide no
incentives for the players to alter their behavior further.

* The most frequently used equilibrium concept is a Nash equilibrium.

12

An lllustrative Advertising Game

* Two firms (A and B) must decide
how much to spend on advertising

* Each firm may adopt either a higher
(H) budget or a low (L) budget.

* The game is shown in extensive
(tree) form.

* A makes the first move by choosing
either H or L at the first decision
”node."

* Next, B chooses either H or L, but
the large oval surrounding B’s two
decision nodes indicates that B does
not know what choice A made.

14

Machine Talk

21

What techniques we will see

* kNN algorithm

* Winnow algorithm

* Naive Bayes classifier

* Decision trees

* Reinforcement learning (Rocchio algorithm)
* Genetic algorithm

22

Neural Networks - Forward Pass

weights
inputs

()
activation

functon
X @ net input
- net.
J
> @ o
X @ activation
a . >
transfer
: function
X, 9
threshold

26

Hopfield Network

* The Hopfield network
consists of a set of N
interconnected neurons
which update their activation
values asynchronously and
independently of other
neurons.

* All neurons are both input
and output neurons. The
activation values are binary
(+1,-1)

32

Self Organization

» The unsupervised weight adapting algorithms are usually based on
some form of global competition between the neurons.

+ Applications of self-organizing networks are:

+ clustering: the input data may be grouped in "clusters' and the data
processing system has to find these inherent clusters in the input data.

« vector quantisation: this problem occurs when a continuous space has to be
discretised. The input of the system is the n-dimensional vector x, the output
is a discrete representation of the input space. The system has to find optimal
discretisation of the input space.

» dimensionality reduction: the input data are grouped in a subspace which
has lower dimensionality than the dimensionality of the data. The system has
to learn an “optimal” mapping.

« feature extraction: the system has to extract features from the input signal.
This often means a dimensionality reduction as described above.

33

Filter
concatenation
7
3 5x5 x1
x1 [) L))
11111 1x1 convolutions 3x3 max pooling
\ — v ——— e
Previous layer

Case Study GoogLeNet [Szegedy et al., 2014] |

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

39

Search Algorithm

40

Types of Search Algorithm (Google Driven)

* Page-Rank Algorithm

* Penguin Algorithm

* Panda Algorithm

* Humming-Bird Algorithm

41

Page-Rank Algorithm(contd...)

=T
°.ﬂdcap./ .
AN

Every page has some number of forward links(Outedges) and
back links(Inedges)

Two cases Page-Rank is interesting:

1. Web pages vary greatly in terms of the number of backlinks they
have. For example, the Netscape home page has 62,804 backlinks
compared to most pages which have just a few backlinks.

Generally, highly linked pages are more “important” than pages
with few links.

43

TensorFlow

52

Google TensorFlow

Second generation Machine Learning system, followed by DistBelief

TensorFlow grew out of a project at Google, called Google Brain, aimed at applying various
kinds of neural network machine learning to products and services across the company.

An open source software library for numerical computation using data flow graphs

Used in following projects at Google

1.
2.
3.

DeepDream
RankBrain
Smart Reply

And many more..

53

» Sequences

Sequence Tensors

o tf.linspace(start, stop, num, name=None)

o tf.range(start, limit=None, delta=1, name=range)

59

Random Tensors

+ Random Tensors
« Examples:

e tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None,
name=None)

« tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32,
seed=None, name=None)

« tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32,
seed=None, name=None)

« tf.random_shuffle(value, seed=None, name=None)
« tf.random_crop(value, size, seed=None, name=None)

« tf.set_random_seed(seed)

60

60

* Avalue that we'll input when we ask TensorFlow to run a computation.

x:
y_ =

Placeholder

tf.placeholder (tf.float32, shape=[None, 784])
tf.placeholder (tf.float32, shape=[None, 10])

64

TensorBoard : Visual Learning

TensorBoard

input new regex

Split On Underscores: .

STEP

Selected Runs:

data

X Type:

RELATIVE WALL '
1.40

EVENTS

® - xentropy

IMAGES GRAPH HISTOGRAMS

220

1.80

1.00

xentropy_mean

0.000 400.0 800.0 1.200k 1.600k

m

65

65

MNIST Dataset

6/ /9415

NEEINSA
01721490
8/4/513/52)

F1/875%
7713682

66

Convolution and Pooling
Stride of one

def conv2d(x, W): i
return tf.nn.conv2d(x, W, str‘ides=[1, 1], padding='SAME')

def max_pool_2x2(x):

return tf.nn.max_pool(x, ksize=[;, 1],
str'ides=_[l, 1], padding='SAME')

Max Pooling over 2x2 blocks

Stride of two

69

Readout Layer

* Finally, we add a softmax layer, just like for the one layer softmax regression.

w_fc2
b_fc2

weight_variable([1024, 10])
bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fcl_drop, W_fc2) + b_fc2)

75

. Optimizer
Train and Evaluate the Model Loss Function

Accuracy
|cross_entropy = -tf.reduce_sum(y_xtf.log(y_conv))[wa ////
train_step = tf.train.AdamOptimizer(le-4).minimize(cross_entropy) ., Training
correct_prediction = tf.equal(tf.argmax(y_conv,1l), tf.argmax(y_,1)) il
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
» sess.run(tf.initialize_all_variables()) B
for i in range(20000):
Initialize batch = mnist.train.next_batch(50)
All if %100 == 0:
Variables train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0}) Testing
print("step %d, training accuracy %g"%(i, train_accuracy)) e
train_step.run(feed_dict={x: batch[0], y_: batch[1]g:E§§EjEFEE?t§;§I},””
print("test accuracy %g"%accuracy.eval(feed_dict={ -
x: mnist.test.images, y_: mnist.test.labels, &eep prob: 1.0}

76

TensorBoard

* TensorBoard operates by reading TensorFlow events files, which contain
summary data that you can generate when running TensorFlow.

* First, create the TensorFlow graph that we'd like to collect summary data
from, and decide which nodes should be annotated with summary operation.
* For example,

* For MNIST digits CNNs, we'd like to record how the learning rate varies over time, and how
the objective function is changing

* We'd like to record distribution of gradients or weights

77

TensorBoard

Graph Representation

Create the model _
= tf.placeholder(tf.float32, [None, 784],| name="x-input") |‘
tf.Variable(tf.zeros([784,10]), name="weights")
tf.Variable(tf.zeros([10], name="bias"))

Graph Representation

use a name scope to organize nodes n the graph visualizer
with| tf.name_scope("Wx_b") las scope:
y = tf.nn.softmax(tf.matmul(x,W) + b) Histogram Summary

O = X #*
Il

ummary ops to collect
w_hist = tf.histogram_summary("weights",
tf.histogram_summary("biases", b)
tf.histogram_summary("y", y

78

e

TensorBoard

Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None,10], name="y-1input")
More name scopes will clean up the graph representation
with tf.name_scope("xent") as scope:
cross_entropy = -tf.reduce_sum(y_x*tf.log(y))
|ce_summ = tf.scalar_summary("cross entropy", cross_entropy)]
with tf.name_scope("train") as scope:
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

with tf.name_scope("test") as scope:
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|accuracy_summary = tf.scalar_summary("accuracy", accuracy) |

Merge all the summaries and write them out to /tmp/mnist_logs

merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter("/tmp/mnist_logs", sess.graph_def)

tf.initialize_all_variables().run()

79

IBM Watson

[oT is driving digital disruption of the physical world (’ IBM Watson ToT Solutions
Accelerating advances Are transforming every e @ .
in technology part of business ;
Operations Performance M
Boosting operational perfoman N/ e "‘“
A2 cognine Anayis Bl i . H Prodat L Mgmt

Connccted Products

experience

‘0 Pervasive Connectivity 1BM Watson loT

Product Lifecycle Creating new products and business
Management models

Q o Campsg Driving engagement and customer !
w

) Embecded sensors Advancing environmental
leadership

— ‘® @'
ﬁi % ngEf &)
Facilities % 9 Factories

Vehicles Home Health Transport
84

DeepQA: The Technology Behind Watson
Massively Parallel Probabilistic Evidence-Based Architecture

DeepQA generates and scores many hypotheses using an extensible collection of

Natural Language Processing, Machine Learning and Reasoning Algorithms.

These gather and weigh evidence over both unstructured and structured content to
determine the answer with the best confidence.

Leamed Models
help combine and
weigh the Evidence

Evidence —

Sources

Models Models
| el | EREE
Deep
Evidence
Scoring

= n Answer Evidence
Candidate || ‘ Scoring Retrieval
Answer \

Generation ||

Question

Models Models |
ey

Models Models

Question& BN) :) Final Confidence
Topic Hypothesis Hypothesis and Evidence s et

Decomposition | NEl=ly(=luloly| Scorin .
Analysis e) e Ranking

Hypothesis and Evidence
Scoring

Hypothesis

3 Generation ‘ Answer &

Confidence

85

Watson — the computer system we developed to play Jeopardy! is based on the DeepQA softate
archtiecture. Here is a look at the DeepQA architecture. This is like looking inside the brain of the
Watson system from about 30,000 feet high.

Remember, the intended meaning of natural language is ambiguous, tacit and highly contextual. The
computer needs to consider many possible meanings, attempting to find the evidence and inference
paths that are most confidently supported by the data.

So, the primary computational principle supported by the DeepQA architecture is to assume and
pursue multiple interpretations of the question, to generate many plausible answers or hypotheses
and to collect and evaluate many different competing evidence paths that might support or refute
those hypotheses.

Each component in the system adds assumptions about what the question might means or what the
content means or what the answer might be or why it might be correct.

DeepQA is implemented as an extensible architecture and was designed at the outset to support
interoperability.

<UIMA Mention>

For this reason it was implemented using UIMA, a framework and OASIS standard for interoperable
text and multi-modal analysis contributed by IBM to the open-source community.

Over 100 different algorithms, implemented as UIMA components, were integrated into this
architecture to build Watson.

85

Microsoft

* Computational Neuroscience
* Hebbian learning

* Hopfield Net

* Bolzmann machines

* Memory models

* Bio-inspired Al

* RNN

* Computer vision NLP

* IR

88

ML and Hadoop: The State of the World

91

Tools for Data Preparation/Feature
Engineering

* Languages/Environments

* Piglatin

* HiveQL

* Need to deal with mismatch between offline/online feature generation
* Java/Scala APIs

e Crunch (Cloudera)

* Scoobi (NICTA)

* Cascading (Concurrent)

* Jagl (IBM)

92

Apache Mahout

* The starting place for MapReduce-based machine learning algorithms
* Not machine-learning-in-a-box
» Custom tweaks/modifications are the rule

* A disparate collection of algorithms for:
* Recommendations
* Clustering
* Classification
* Frequent Itemset Mining

93

Visualization

97

Data Driven Documents

color

click to get started

i

i

[

ngggg;%?mmm

D3js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life
using HTML, SVG and CSS. D3's emphasis on web standards gives you the full capabilities of modern

58583

ﬂ‘
el
S|

o weng oo o)

s3uBER

See more examples

100

100

Office

HOME MY OFFICE PRODUCTS SUPPORT IMAGES TEMPLATES SYCRE

P

ARGl Try with Office

EMPLOYEE TRAVEL EXPENSE TRENDS

What's new in Excel? >

(=)C\.“'."Sr

101

Apache Tajo Storage and Data Format

Support

Data
formats

Sorage
types

...

SequenceFile e

P | Buff
RCFile rotocol Buffer

- -

APRACHE ¢ N

|3 HBASE < !

. Java |1

@? elasticsearch. | jogc |i

_____ — A R ——)

106

106

Presto

v7100% open source SQL on Hadoop query engine

w’Presto offers a modern code base, proven scalability,
interactive querying, and cross platform query capability

«Licensed by Apache
«’Only major vendor support, Teradata

v“Used by a community of well known, well respected
technolc = -~~~ nies
facebook (o) airbnb GROUPON'

NETFLIX £ Drophox ®GREE

108

Interactive performance of execution engine
Code generation for operators (similarly to Impala)
Data is pipelined MPP-style
Runs at Facebook scale

108

Presto Architecture

Coordinator

Worker

Worker . /m«— Data stream API 4_@

Notes from https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-
petabytes-of-data-at-facebook/10151786197628920

The diagram below shows the simplified system architecture of Presto. The client sends SQL to
the Presto coordinator. The coordinator parses, analyzes, and plans the query execution. The
scheduler wires together the execution pipeline, assigns work to nodes closest to the data, and
monitors progress. The client pulls data from output stage, which in turn pulls data from
underlying stages.

The execution model of Presto is fundamentally different from Hive/MapReduce. Hive
translates queries into multiple stages of MapReduce tasks that execute one after another. Each
task reads inputs from disk and writes intermediate output back to disk. In contrast, the Presto
engine does not use MapReduce. It employs a custom query and execution engine with
operators designed to support SQL semantics. In addition to improved scheduling, all processing
is in memory and pipelined across the network between stages. This avoids unnecessary 1/0
and associated latency overhead. The pipelined execution model runs multiple stages at once,
and streams data from one stage to the next as it becomes available. This significantly reduces
end-to-end latency for many types of queries.

The Presto system is implemented in Java because it’s fast to develop, has a great ecosystem,
and is easy to integrate with the rest of the data infrastructure components at Facebook that
are primarily built in Java. Presto dynamically compiles certain portions of the query plan down
to byte code which lets the JVM optimize and generate native machine code. Through careful
use of memory and data structures, Presto avoids typical issues of Java code related to memory
allocation and garbage collection.

110

Presto Connectors

Client

i [
il G

Presto Coordinator

Presto worker Presto worker Presto worker Presto worker

== == ==
@ '
cassandra Wl MySQL

111

The client sends SQL to the Presto coordinator node. The coordinator in this case
determines there are operations needed from more than just Hive data.

*A coordinator (a master daemon) uses connectors to get metadata (such as table schema)
that is needed to build a query plan. Workers use connectors to get actual data that will be
processed by them.

Presto supports pluggable connectors that provide metadata and data for queries. The Hive
connector supports Text, SequenceFile, RCFile, ORC and Parquet (?) formats.

Presto does NOT access the Hive server or Hive. It accesses Hive tables in HDFS. The
graphic is kept simple but the details are not so simple.

111

Presto Extensibility — plug-ins

Coordinator Worker

Metadata API Data location API Data stream API

Parser/
analyzer Scheduler

112

Hive tables and HCatalog
Apache Cassandra
Apache Kafka
Kafka topics = Presto tables,
messages = rows
MySQL
Single node access only -- no sharding
Postgres

Single node access only

112

	2017 Onsite Eval use.pdf
	Untitled
	Untitled

