EAWi

Transforming Data
With Intelligence™

Previews of TDW!I course books offer an opportunity
to see the quality of our material and help you to select
the courses that best fit your needs. The previews
cannot be printed.

TDWI strives to provide course books that are content-
rich and that serve as useful reference documents after
a class has ended.

This preview shows selected pages that are
representative of the entire course book; pages are not
consecutive. The page numbers shown at the bottom of
each page indicate their actual position in the course
book. All table-of-contents pages are included to
Illustrate all of the topics covered by the course.

© TDWI. All rights reserved. Reproductions in whole or in part are prohibited except by written permission. DO NOT COPY.

This page intentionally left blank.

HANDS ON HADOOP

@2016 Sixth Sense Advisors Inc 3

« The advent of Big Data has changed the world of analytics forever. Big data
challenges scalability, and big data platforms reshape Bl and analytics
infrastructure. Hadoop has taken center stage in the big data revolution,
and we’ll all need to understand the platform and its ecosystem, and how to
work with Hadoop.

+ The enterprise adoption of Hadoop is met with mixed responses ranging
from “wow!” to uncertainty and doubt about how to implement and derive
value — often even experiencing mixed and conflicting responses within a
single individual group or a person. Join us to learn the basics of Hadoop, to
understand the realities, to sort out the conflicts, and to know where and
how Hadoop fits into your Bl and analytics future. We will discuss the
ecosystem and its intricacies looking at where it will help and how
companies have embraced its usage.

+ Objectives:
« Big Data — Definition
- Hadoop — Data Ingestion
« Hadoop — Pig
« Hadoop — Hive
+ Hadoop - HCatalog
+ Hadoop Q&A

What disrupted the data center?

HANDS-ON-HADOQOP

@2016 Sixth Sense Advisors Inc 7

Core Components

Data Ingestion HDFS YARN

Pig Hive Spark

Security Workflow Jobs

HDFS Browser

/tmp +Newdirectoy & Upload

. tmp # Search File Names Q
Name v Size Last Modified Owner Group Permission Asc Namew Q-

b

B data . 20160622 10:2 maria dev hdfs TWXTWTWX Erli 0

W entity-file-history . 201603140919 s hdfs TWK-XIX Eri 0

W hive - 2016-08-16 1938 ambar-ga hdfs TWX-WX-WK BErw

. Dashboard

FS Links

Mameablada

@2016 Sixth Sense Advisors Inc

Memory Usage

Aa Nata Availahia

Launch HDFS File Browser

YARN Queue Manager

HDFS Files

Hive View

Pig
Tez View

Ala Pata Avallahla

11

@2016 Sixth Sense Advisors Inc

Ambari

B HDFS

© MapReduce2
© YARN

Q Tez

© Hive

@ HBase

Q Pig

0 Sqoop

© Oozie

© ZooKeeper
@ Falcon
Storm

© Flume
Ambari Metrics
© Atlas

B Kafka

8 Knox

© Ranger

0 Slider

© Spark

Sandbox

Metrics Heatmaps

Pig Ul

Config History

Metric Actions ~ Last 1 hour ~
HDFS Disk Usage DataNodes Live
Sih 11
CPU Usage Cluster Load
No Data Availabie No Data Availabie
NameNode Uptime HBase Master Heap

28.1 min

Launch

Dashboard

HDFS Links

NameNode
Secondary NameNode
1 DataNodes

More... ¥

NameNode Heap

35%

HBase Links

No Active Master
1ReglonServers
na

'YARN Queue Manager
HDFS Files
Hive View

Memory Usage Tez View

No Data Available No Data Avallable
NameNode RPC NameNode CPU WIO
Oms
HBase Ave Load HBase Master Uptime

15

@2016 Sixth Sense Advisors Inc 17

Create New Script

T

@ — R + New Script
New Script
" UDFs Actions
Hi /& Del
O History Name OHistory hCopy B Delete

Class_Pig_Seript_1
Bhow: | 10 &| 1-1of1 €

Script HDFS Location (optional)

hdfs/path/to

Leave empty to create file automatically.

Cancel

@2016 Sixth Sense Advisors Inc

Pig Functions Help

—

[[

Class_Pig_Script_1

Class_Pig_Script_1 ¢

8 Delete Eval Functions
Relational Operators
]

Debug

HCatalog

Math

Tuple, Bag, Map Functions
String Functions

Macros

HBase

Python UDF

PIG helper » | UDF helper + /tmp/.pigscripts/classpigscript1-2016-

O Execute on Tez Execute ~

2_03-4

18

Language Features

Several options for user-interaction
— Interactive mode (console)
— Batch mode (prepared script files containing Pig Latin commands)
— Embedded mode (execute Pig Latin commands within a Java program)

Built primarily for scan-centric workloads and read-only data
analysis

— Easily operates on both structured and schema-less, unstructured data
— Transactional consistency and index-based lockups not required
— Data curation and schema management can be overkill
Flexible, fully nested data model
Extensive UDF support
— Currently must be written in Java

— Can be written for filtering, grouping, per-tuple processing, loading
and storing

20

@2016 Sixth Sense Advisors Inc 21

Pig Latin vs. SQL

* Pig Latin is procedural (dataflow programming model)

— Step-by-step query style is much cleaner and easier to write and
follow than trying to wrap everything into a single hlock of SQL

insert into ValuableClicksPerDMA
select dma, count(*)
from geoinfo join (
select name, ipaddr
from users join clicks on (users.name = clicks.user)
where value > 0;
) using ipaddr
group by dma;

Users = load 'users' as (name, age, ipaddr);

Clicks = load 'clicks' as (user, url, value);
ValuableClicks = filter Clicks by value > 0;

UserClicks = join Users by name, ValuableClicks by user;
Geoinfo = load 'geoinfo' as (ipaddr, dma);

UserGeo = join UserClicks by ipaddr, Geoinfo by ipaddr;
ByDMA = group UserGeo by dma;

ValuableClicksPerDMA = foreach ByDMA generate group, COUNT(UserGeo);

store ValuableClicksPerDMA into 'ValuableClicksPerDMA';

Source:

http://developer.yahoo.net/blogs/hadoop/2010/01/comparing_pig_latin_and_sql_fo.html

21

@2016 Sixth Sense Advisors Inc 24

Pig Data Model

* By default Pig treats undeclared fields as
bytearrays (collection of uninterpreted bytes)

* Can infer a field’s type based on:
— Use of operators that expect a certain type of field
— UDFs with a known or explicitly set return type

— Schema information provided by a LOAD function
or explicitly declared using an AS clause

* Type conversion is lazy

24

A=LOAD 'file1' AS (x, v, z);
B=LOAD 'file2" AS (t, u, v);
C=FILTER A by y > 0;
D=JOIN C BY x, B BY u;
E=GROUP D BY z;

F=FOREACH E GENERATE
group, COUNT(D);

STORE F INTO 'output’;

@2016 Sixth Sense Advisors Inc

Logical Plan

LOAD

FILTER

GROUP

FOREACH

STORE

27

27

« 1:1 correspondence with most logical operators

« Except for:

.

DISTINCT
(CO)GROUP
JOIN
ORDER

@2016 Sixth Sense Advisors Inc

Physical Plan

28

28

@2016 Sixth Sense Advisors Inc E{1]

Physical plan execution

« Executing the portion of a physical plan within a Map or
Reduce stage

 Push vs. Pull (iterator) Model

« Push
« complicated API
* multiple threads needed

= Pull
* simple API
* single thread
+ Two drawbacks
* bag materialization — “push” can control combiner within the operator
« branch point — operators at branch point may face buffering issue

30

@2016 Sixth Sense Advisors Inc 33

Streaming

- Allows data to be pushed through external executables

- Example:
- A=LOAD 'data’;
+ B=STREAM A THROUGH 'stream.pl -n 5';
- Due to asynchronous behavior of external executables, each
STREAM operator will create two threads for feeding and
consuming data from external executables.

33

Expressions
within the
GENERATE
clause can take
the form of the
any of these
expressions

@2016 Sixth Sense Advisors Inc

Pig Latin

* FOREACH-GENERATE (per-tuple processing)
— lterates over every input tuple in the bag, producing one
output each, allowing efficient parallel implementation
expanded_queries = FOREACH queries GENERATE
userld, expandQuery(queryString);

t = ('alice’.{ (

flakers’
(*iPod’,

Let fields of tuple t be called £1, £2, £3

'2;') } [fage’ — zoj)

Expression Type Example Value for t
Constant ‘bob? Independent of t
Field by position $0 ‘alice’
Field by name £3 fage’ — 20 |
N (*lakers’)
Projection £2.80 { (*iPod?)
Map Lookup £3#‘age’ 20
Function Evaluation SUM(£f2.%$1) 1 +2 =3
Conditional 3% age’ >187 N
Expression fadult’: “minor’ adule’
~ » ‘lakers’, 1
Flattening FLATTEN(£2) <iPod’, 2

34

@2016 Sixth Sense Advisors Inc 36
Pig Latin

+ LOAD/STORE

— Default implementation expects/outputs to tab-delimited plain text
file

queries = LOAD ‘query_locg.txt’
USING myLoad()
AS (userId, queryString, timestamp);

STORE query_revenues INTO ‘myoutput’
USING myStore();

* Other commands
— FILTER, ORDER, DISTINCT, CROSS, UNION

* Nested operations

— FILTER, ORDER and DISTINCT can be nested within a FOREACH
statement to process nested bags within tuples

36

@2016 Sixth Sense Advisors Inc 38

Pig Latin

- How do you know if a Load or any other data transformation
worked? We can use DUMP to display data on the screen, but
we have to be careful because it will display all the rows of
whatever we ask it to.

+ DUMP alias or DUMP athletes;

38

@2016 Sixth Sense Advisors Inc 40

Pig Latin

« First, a little background on data structure.

+ In Pig, a set of data entries is called a relation, and its name is called an alias (these
words are often used interchangeably).

- For example 'athletes' and 'athletes_lim' are relations--They are effectively sets of of
data "rows", all of which describe the same type of thing. In SQL, this would be called
a table.

- A relation contains rows or entries, which in Pig are represented by tuples.

+ Atuple is made up of fields, which sometimes might also be called columns
(especially by people with a SQL background).

- For example, in the relation 'athletes’, the fields are 'athlete’, 'country’, 'year', etc.

« In order to figure out which country has the most medals in a given dataset
of Olympic results, we'll want to do a sum of the field 'total', while grouping
by the field 'country'. To accomplish the grouping, we use the GROUP BY
syntax in PIG - data_grp_field = GROUP data BY col;

+ Example: athletes_grp_country = GROUP athletes BY country;

40

@2016 Sixth Sense Advisors Inc 42

Pig Latin

« In Pig, any time you want to add, remove, or change the data you
have in an alias, you’ll use the FOREACH... GENERATE syntax.
+ You can use it to get rid of columns:

« data = LOAD 'my-file.csv' using PigStorage('field1: int, field2: chararray, field3:
long');

« new_data = FOREACH data GENERATE field1, field2;
+ You can use it to add or duplicate columns:
« new_data = FOREACH data GENERATE field1, field2, field2 as field2_copy;
+ You can also use it to apply functions:
- data_grp = GROUP data BY field2;
- new_data = FOREACH data_grp GENERATE group as field2, SUM(data.field) as
field_sum;
« Example:
- medal_sum = FOREACH athletes_grp_country GENERATE group AS country,
SUM(athletes.total) as medal_count;
+ DUMP medal_sum;

We've grouped our data but we still don’t have our answer. We need to use an aggregate
function—that is to say, a function that will look at the data in a single field across all rows,
and tell us something about it. In this case, the function called SUM will add up the number
of medals.

@2016 Sixth Sense Advisors Inc 43

Pig Latin

+ GROUP ALL - In order to find that out we’re going to again need to
use an aggregate function. This time we don't want to group over any
field in the data, we want to consider all of it together. In Pig, to
accomplish that we need to use GROUP ALL. This groups the entire
data set into one “bin” so that you can do aggregate functions on it.

« In this case, MAX and MIN are the functions we’ll want.

- data_grp = GROUP my_data ALL;
+ new_data = FOREACH data_grp GENERATE MIN(data.field1) as min_field1;

- A bonus is we can actually combine those two statements using a
nested FOREACH.

+ new_data = FOREACH (GROUP my_data ALL) GENERATE MIN(data.field1) as
min_field1;

+ Example

- data_range = FOREACH (GROUP athletes ALL) GENERATE MIN(athletes.year)
as min_year, MAX(athletes.year) as max_year;

- DUMP data_range;

43

@2016 Sixth Sense Advisors Inc 45

Pig Latin

- ORDER BY - You probably just got a lot of data streaming across
the screen in a way that wasn’t abundantly useful. We already
know we can get a smaller data set using LIMIT, but we don’t
really want a random sampling of data. To get the result set in
an ascending or descending rank, we can do the result set
order by first, and then using LIMIT.

« ordered_data = ORDER summed_data BY field_sum DESC (or ASC);

- Example

- ordered_medals = ORDER medal_sum BY medal_count DESC;
+ ordered_medals_lim = LIMIT ordered_medals 1;
+ DUMP ordered_medals_lim;

45

@2016 Sixth Sense Advisors Inc 46

Pig Latin

« FILTER BY — In a dataset if we needed to exclude a set of data
we can do the same with the FILTER BY command
- filtered_datal = FILTER my_data BY field != 'Field Value',
- filtered_data2 = FILTER my_data BY field > 12;
« filtered_data3 = FILTER my_data BY field1 == 0 AND field2 < 6;
- Example
+ athletes_filter = FILTER athletes by sport = 'Swimming';

- medal_sum = FOREACH (GROUP athletes_filter BY country) GENERATE
group as country, SUM(athletes_filter.total) as medal_count;

- ordered_medals = ORDER medal_sum BY medal_count DESC;
+ ordered_medals_lim = LIMIT ordered_medals 1;
+ DUMP ordered_medals_lim;

46

@2016 Sixth Sense Advisors Inc 49

Pig Latin

« User Defined Function (UDF) - Pig allows the use of User-
Defined Functions in other languages including Java, Ruby,
Python, and Javascript.

« from pig_util import outputSchema

+ @outputSchema('score:int')

- def calculate_score(gold, silver, bronze):
« return 3 * gold + 2 * silver + bronze

- Register the UDF first
+ REGISTER 'olympic_udfs.py' USING streaming_python AS udf;
- Example

- athlete_score = FOREACH athletes GENERATE athlete,
udf.calculate_score(gold, silver, bronze) as score;

49

@2016 Sixth Sense Advisors Inc 50

Word Count using Pig

Lines=LOAD ‘input/hadoop.log’ AS (line: chararray);

Words = FOREACH Lines GENERATE FLATTEN(TOKENIZE(line)) AS
word;

Groups = GROUP Words BY word;

Counts = FOREACH Groups GENERATE group, COUNT(Words);
Results = ORDER Words BY Counts DESC;

Top5 = LIMIT Results 5;

STORE Top5 INTO /output/top5words;

50

ADVANCED PIG

52

@2016 Sixth Sense Advisors Inc 53

JSON

- Example Data

non n,n

« {"food":"Tacos", "person":"Max", "amount”:5}

+ {"food":"Tomato Soup", "person":"Jane", "amount”:1}

« {"food":"Grilled Cheese", "person":"Alice", "amount”:2}

- Create a file called json_example.json and store the data into
the file.

53

@2016 Sixth Sense Advisors Inc 55

Nested Data in JSon

- JSON and Pig both support nesting data. We can store bags of
data and tuples in JSON and read the data into Pig.

- Pig expects tuples to be stored in JSON as dictionaries and bags
as lists of dictionaries.

- Example

« "recipe":"Tostada","ingredients":[{"name":"Chicken"},{"name":"Salsa"},{
name":"Cheese"}],"inventor":{"name":"Jane","age”:18}}
+ In this dataset, the ingredients bag is stored as a list of dictionaries

([{"name":"Chicken"},{"name":"Salsa"},{"name":"Cheese"}]). Similarly, the
inventor tuple is stored as a dictionary ({"name":"Jane","age”:18}).

n

nmn mn.n

- {"recipe":"TomatoSoup","ingredients":[{"name":"Tomatoes"},{"name":
Milk"}],"inventor":{"name":”Sarah","age”:16}}

« Copy the example data into a file nested_data.json

55

@2016 Sixth Sense Advisors Inc 57

JsonStorage

+ Example
+ STORE data_table INTO ‘data_table.json” USING JsonStorage();

+ In HDFS the output directory is created with files representing the data is
created from the store function.

+ Pig also creates an intermediate file in the folder called “.pig_schema”

that explicitly specifies the schema of the output data, which is used for
future operations:

= {"fields":[{"name":"col1","type":55,"description":"autogenerated from Pig

Field Schema","schema":null}],"version":0,"sortKeys":[],"sortKeyOrders":[]}

57

HIVE — DATA QUERY ON
HADOOQOP

Hands-on-Hadoop

60

@2016 Sixth Sense Advisors Inc 61

Why Another Data Warehousing System

* Problem : Data, data and more data
- Several TBs of data everyday

- The Hadoop Experiment:
- Uses Hadoop File System (HDFS)
+ Scalable/Available

* Problem
+ Lacked Expressiveness
- Map-Reduce hard to program

- Solution : HIVE

61

I Hive Architecture

. SaL JDBC /
i o ODBC

@2016 Sixth Sense Advisors Inc

62

Hive

MR/Tez
Compiler

Executor

0 User issues SQL query

@ Hive parses and plans query

Query converted to
° MapReduce/Tez and
executed on Hadoop

— Hadoop

Data-local processing

MapReduce or Tez Job

Papn trtonwarka Inc 2011 = 2015, Al A gt Pl rved

62

Type System

* Primitive types
- Integers:TINYINT, SMALLINT, INT, BIGINT.
~ Boolean: BOOLEAN.
Floating point numbers: FLOAT, DOUBLE .
~ String: STRING.
+ Complex types
— Structs: {a INT; b INT}.
~ Maps: M['group'].
Arrays: ['a','b’", 'c'], A[1] returns 'b".

64

@2016 Sixth Sense Advisors Inc 66

Data Model - Partitions

+ Partitions

+ Analogous to dense indexes on partition columns

+ Nested sub-directories in HDFS for each combination of partition column
values.
+ Allows users to efficiently retrieve rows
« Example
= Partition columns: ds, ctry
= HDFS for ds=20120410, ctry=US
« /wh/pvs/ds=20120410/ctry=US
- HDFS for ds=20120410, ctry=IN
* /wh/pvs/ds=20120410/ctry=IN

66

@2016 Sixth Sense Advisors Inc

Hive Query Language

« Partitioning — Creating partitions
+ CREATE TABLE test_part(ds string, hr int)
+ PARTITIONED BY (ds string, hr int);

- INSERT OVERWRITE TABLE
- test_part PARTITION(ds='2009-01-01', hr=12)

+ SELECT * FROM t;

+ ALTER TABLE test_part ADD PARTITION(ds='2009-02-02', hr=11);

67

@2016 Sixth Sense Advisors Inc 69

Data Model

* Buckets
« Split data based on hash of a column — mainly for parallelism
- Data in each partition may in turn be divided into Buckets based on the
value of a hash function of some column of a table.
+ Example
* Bucket column: user into 32 buckets
+ HDFS file for user hash 0
+ /wh/pvs/ds=20120410/cntr=US/part-00000
= HDFS file for user hash bucket 20
* /wh/pvs/ds=20120410/cntr=US/part-00020

69

@2016 Sixth Sense Advisors Inc

Data Model

« External Tables

+ Point to existing data directories in HDFS

+ Can create table and partitions

+ Data is assumed to be in Hive-compatible format

+ Dropping external table drops only the metadata

- Example: create external table
CREATE EXTERNAL TABLE test_extern(c1 string, c2 int)
LOCATION 'fuser/mytables/mydata’;

70

@2016 Sixth Sense Advisors Inc 72

Hive File Formats

« Hive lets users store different file formats

- Helps in performance improvements

- SQL Example:
CREATE TABLE dest1(key INT, value STRING)
STORED AS
INPUTFORMAT
'org.apache.hadoop.mapred.SequenceFilelnputFormat'
OUTPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileQutputFormat'

72

@2016 Sixth Sense Advisors Inc 74

Alter Database

« hive> ALTER DATABASE financials SET DBPROPERTIES ('edited-by' =
'Joe Dba');

« CREATE TABLE IF NOT EXISTS mydb.employees (
name STRING COMMENT 'Employee name’,
salary FLOAT COMMENT 'Employee salary’,
subordinates ARRAY<STRING> COMMENT 'Names of subordinates',
deductions MAP<STRING, FLOAT>

« COMMENT 'Keys are deductions names, values are percentages’,
address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>

+ COMMENT 'Home address') COMMENT 'Description of the table'

+ TBLPROPERTIES ('creator'="'me’, 'created_at'='2012-01-02 10:00:00',
...) LOCATION '/user/hive/warehouse/mydb.db/employees';

« hive> DESCRIBE EXTENDED mydb.employees;

74

@2016 Sixth Sense Advisors Inc 75

SHOW Database

- SHOW DATABASES;
+ default
« financials

+ CREATE DATABASE financials
> WITH DBPROPERTIES ('creator' = 'Mark Moneybags', 'date’ =
'2012-01-02";

- hive> DESCRIBE DATABASE financials;
financials hdfs://master-
server/user/hive/warehouse/financials.db

- hive> DESCRIBE DATABASE EXTENDED financials;
financials hdfs://master-
server/user/hive/warehouse/financials.db

- {date=2012-01-02, creator=Mark Moneybags);

75

@2016 Sixth Sense Advisors Inc

Create External Table

CREATE EXTERNAL TABLE IF NOT EXISTS stocks (
exchange STRING,

symbol STRING,

ymd STRING,

price_open FLOAT,

price_high FLOAT,

price_low FLOAT,

price_close FLOAT,

volume INT,

price_adj close FLOAT)

CLUSTERED BY (exchange, symbol)

SORTED BY (ymd ASC)

INTO 96 BUCKETS

ROW FORMAT DELIMITED FIELDS TERMINATED BY ',
LOCATION '/data/stocks';

76

@2016 Sixth Sense Advisors Inc 77

Create Table

« CREATE TABLE employees (
name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING, FLOAT>,
address STRUCT<street:STRING, city:STRING, state:STRING,
Zip:INT>)
PARTITIONED BY (country STRING, state STRING);

77

@2016 Sixth Sense Advisors Inc 80

Alter Table

+ ALTER TABLE log_messages
CHANGE COLUMN hms hours_minutes_seconds INT
COMMENT 'The hours, minutes, and seconds part of the
timestamp' AFTER severity;

- ALTER TABLE log_messages ADD COLUMNS (
app_name STRING COMMENT 'Application name', session_id
LONG COMMENT 'The current session id');

80

@2016 Sixth Sense Advisors Inc 81

Alter Table

- ALTER TABLE log_messages REPLACE COLUMNS (
hours_mins_secs INT COMMENT 'hour, minute, seconds from
timestamp', severity STRING COMMENT 'The message severity'
message STRING COMMENT 'The rest of the message');

« ALTER TABLE log_messages

PARTITION(year = 2012, month = 1, day = 1) SET FILEFORMAT
SEQUENCEFILE;

81

@2016 Sixth Sense Advisors Inc

Hive Query Language

- Basic SQL
« From clause sub-query
+ ANSI JOIN (equi-join only)
- Multi-Table insert
« Multi group-by
+ Sampling
+ Objects Traversal
- Extensibility
+ Pluggable Map-reduce scripts using TRANSFORM

83

83

@2016 Sixth Sense Advisors Inc 84

- JOIN

+ INSERTION

sample;

Hive Query Language

- Select tl.alascl, t2.blasc2 from tl join t2 ON (tl.a2 = t2.b2);

« Insert overwrite table t1

« Insert overwrite samplel '/tmp/hdfs_out’ select * from sample where
ds="'2012-02-24’;

- Insert overwrite directory '/tmp/hdfs_out' select * from sample where
ds='2012-02-24’;

+ Insert overwrite local directory '/tmp/hive-sample-out' select * from

84

@2016 Sixth Sense Advisors Inc 85

Hive Query Language

- Map Reduce

« FROM (MAP doctext USING 'python wc_mapper.py' AS (word,
cnt) FROM docs CLUSTER BY word) REDUCE word, cnt USING
'python wc_reduce.py’;

« FROM (FROM session_table SELECT sessionid, tstamp, data
DISTRIBUTE BY sessionid SORT BY tstamp) REDUCE sessionid,
tstamp, data USING 'session_reducer.sh’;

85

@2016 Sixth Sense Advisors Inc 86

Hive Query Language

« Example of multi-table insert query and its optimization

+ FROM (SELECT a.status, b.school, b.gender FROM status_updates a JOIN
profiles b ON (a.userid = b.userid AND a.ds='2009-03-20')) subq1l

- INSERT OVERWRITE TABLE gender_summary PARTITION(ds='2009-03-20")
SELECT subqgl.gender, COUNT(1) GROUP BY subgl.gender

+ INSERT OVERWRITE TABLE school_summary PARTITION(ds='2009-03-20’)
SELECT subql.school, COUNT(1) GROUP BY subgl.school

86

'\ Ambari Sandbox

Hive Query Saved Queries

Database Explorer

@2016 Sixth Sense Advisors Inc 88

Hive Query Ul Launch

YARN Queue Manager
History UDFs Upload Table

HDFS Files
Query Editor Pig
Tez View
Worksheet (i)

88

Ambari

Hive Query

Database Explorer

default

Databases

Sdefault
@Bbatting_data
EBsample_07
BEsample_08
Btemp_batting

Sxademo

andbox

Saved Queries

@2016 Sixth Sense Advisors Inc

Hive Query Execution

History UDFs Upload Table

Query Editor

Worksheet

1 create table temp_batting (col_value STRING);

[IR .

Query Process Results (Status: Succeeded)

Logs Results.

89

Save results... ~

89

@2016 Sixth Sense Advisors Inc

Hive Query Execution

Ambari Sandbo: maria_dev

Hive Query SavedQueries History UDFs Upload Table

Database Explorer < Query Editor »

default A Worksheet

e

1 LOAD DATA INPATH '/tmp/data/Batting.csv’' OVERWRITE INTO TABLE temp_batting;

©
2
=l

Databases

Sdefault
EBbatting_data
Esample_07
BBsample_08
Etemp_batting

Sxademo

ﬂaﬁo"ﬁﬁ

Query Process Results (Status: Succeeded) Save results... ~

Logs Results

previous | next

@2016 Sixth Sense Advisors Inc 93

Hive Query Execution

Hive Query Saved Queries History UDFs Upload Table

Database Explorer f+] Query Editor s
default - Worksheet Li]
1 SELECT a.year, a.player_id, a.runs from batting a sQL

Search tabe 2 JOIN (SELECT year, max(runs) runs FROM batting GROUP BY year) b
3 ON (a.year = b.year AND a.runs = b.runs);

L
Databases ™
Sdefault
EBbatting %
Abatting_data
EBsample_07 uz
EBsample_08 = $
Btemp_batting
Exademo @ Explain = Saveas.. [LUEESLY New Worksheet

Query Process Results (Status: Succeeded) Save results... v

Logs Results

umns. previous | next

93

@2016 Sixth Sense Advisors Inc
1

95

]
Starting Spark

- http://127.0.0.1:4200 - Sandbox login
- Change password: sparkclass

96

Running a Pi Calculation Job

- export SPARK_HOME=/usr/hdp/current/spark-client
- cd SSPARK_HOME
- su spark
* Pi
+ ./bin/spark-submit --class org.apache.spark.examples.SparkPi --

master yarn-client --num-executors 3 --driver-memory 512m --executor-
memory 512m --executor-cores 1 lib/spark-examples*.jar 10

98

Wordcount Job

Wordcount Spark shell
hadoop fs - ./bin/spark-shell --master yarn-
copyFromLocal /etc/hadoop/con client --driver-memory 512m --

f/log4j.properties /tmp/data executor-memory 512m

16/09/10 18:59:54 INFO metastore: Connected to metastore.
16/09/10 18:59: INFO SessionState: Created local directory: /tmp/b@407c5d-c@ed
16/09/10 18:59: INFO SessionState: Created HDFS directory: /tmp/hive/spark/b@
16/09/10 18:59: INFO SessionState: Created local directory: /tmp/spark/b0407cj
16/09/10 18:59: INFO SessionState: Created HDFS directory: /tmp/hive/spark/b@4
16/09/10 18:59: INFO SparkILoop: Created sql context (with Hive support)..
SQL context available as sqlContext.

scala> []

101

r "' 200]
Wordcount - 2

- val lines = sc.textFile(“/tmp/data/filename.txt”)

- val counts = lines.flatMap(line => line.split(" ")).map(word =>
(word, 1)).reduceByKey(_+ _)

103

« Df.show
- More commands to try

+ // Count people by age

- // Count people by age

Dataframe

+ At the prompt input the command
- val df = sqlContext.jsonFile("people.json")
+ Display the contents of the DataFrame

+ import org.apache.spark.sql.functions._
- // Select all, but increment the age by 1
« df.select(df("name"), df("age") + 1).show()
- // Select people older than 21
- dffilter(df("age") > 21).show()

- df.groupBy("age").count().show()

- df.groupBy("age").count().show()

105

Dataframe

Programmatically Specifying a Schema

import org.apache.spark.sql._

// Create sqgl context from an existing SparkContext (sc)

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// Create people RDD

val people = sc.textFile("people.txt")

// Encode schema in a string

val schemaString = "name age"

// Import Spark SQL data types and Row

import org.apache.spark.sql.types.{StructType,StructField,S :
tringType} .
// Generate the schema based on the string of schema

val schema = StructType(
schemasString.split(" ").map(fieldName =>
StructField(fieldName, StringType, true)))

// Convert records of people RDD to Rows

val rowRDD = people.map(_.split(",")).map(p => Row(p(0),
p(1).trim})

// Apply the schema to the RDD

val peopleSchemaRDD = sqlContext.createDataFrame(rowR
DD, schema)

// Register the SchemaRDD as a table
peopleSchemaRDD.registerTempTable("people")

// Execute a SQL statement on the 'people’ table

val results = sqlContext.sql("SELECT name FROM peaple")
// The results of SQL queries are SchemaRDDs and support
all the normal RDD operations.

// The columns of a row in the result can be accessed by
ordinal

results.map(t => "Name: " + t(0)).collect().foreach(printin)

107

]
SparkSQL

« At prompt on beeline

- show tables;

+ Will show you tables available
- Type Ctrl+C to exit beeline.
- Stop Thrift Server

- ./shin/stop-thriftserver.sh

110

	2017 Onsite Eval use.pdf
	Untitled
	Untitled

