Day 1

Dimensional Modeling Concepts

- Dimensional Modeling in Context
 - Business Intelligence Defined
 - Data Warehousing Defined
 - Data Mart Defined
- Dimensional Modeling Basics
 - Dimensional Model Defined
 - Dimensional Modeling Defined
 - Business Metrics and Measures Defined
 - Business Metrics Examples
 - Dimensional Data Models
- Comparing E-R and Dimensional Models
 - A Quick Review of E-R Modeling
 - Introduction to Dimensional Models
 - Relational with Additional Constraints
 - A Basis for Comparison
 - Relational for Transaction Processing
 - Dimensional Data for Business Analysis
 - Conformed Dimensions
- Concepts Summary
 - Review of Some Key Points

Module Two

Requirements Gathering for Dimensional Models

- Business Context for Data Modeling
 - Business Value
 - Business Alignment
 - Business Process Alignment
- Business Questions as Requirements Models
 - A Framework for Business Questions
 - Examples
 - Refining Business Questions
- Fact/Qualifier Analysis
 - From Business Questions to Data Requirements
 - Mapping Business Questions
- Requirements Gathering Summary
 - Process Review

Module Three

Logical Dimensional Data Modeling
• Modeling Meters and Measures
 o A Group of Related Business Measures
• Modeling Dimensions
 o Adding Dimensions from Qualifiers
 o Dimension Hierarchy
 o Refining the Dimensions
 o Completing the Dimensions
• More about Meters and Measures
 o Granularity and the Meter
 o Granularity and the Measures
 o Completing the Meter
• Model Verification
 o Testing the Model
• Logical Modeling Summary
 o Process Review

Module Four
From Logical Model to Star Schema

• Star Schema Dimensions
 o Naming the Dimensions
 o Modeling Dimension Tables
 o Defining Dimension Table Keys
• Star Schema Fact Tables
 o Modeling the Fact Table
 o Defining the Fact Table Key
 o Supporting Calculated Measures
 o Semi-Additive and Non-Additive Facts
• Star Schema Design Challenges
 o Slowly Changing Dimensions
 o Degenerate Dimensions
 o Junk Dimensions
 o Difficult Situations
• Modeling Process Summary
 o From Business Requirements to Star Schema

Module Five
Dimensional Data and Business Analysis

• Delivering Business Value
 o Data Enabled Business Analysis
 o Collecting, Analyzing, and Using Business Metrics
• Effective Dimensional Modeling
 o Critical Success Factors
 o Mistakes to Avoid
 o References and Learning Resources
Day 2

Advanced Dimensional Modeling: Techniques for Practitioners

Offered by Chris Adamson through TDWI Onsite Education

Module One
Fundamentals

- Dimensional Modeling
 - Process measurement
 - Uses beyond database design
- Information Architectures and Dimensional Data
 - Inmon’s CIF Architecture
 - Kimball’s Dimensional Bus
 - Stand-alone Data Marts
- Fundamental Terms and Best Practices
 - Facts and dimensions
 - Surrogate keys, natural keys and slow change processing
 - Fundamental concepts including grain, sparsity and additivity
 - Best practices for fact tables and dimension tables
- Implementations
 - Relational (star and snowflake)
 - Multidimensional (cube)
 - Cubes as primary store
 - Cubes as derived data stores

Module Two
Multiple Stars

- Multiple star solutions
- Designing multiple fact tables
 - Identifying multiple processes
 - Differences in dimensionality
 - The pitfalls of single fact table design
- Using multiple stars
 - How not to query multiple fact tables
 - The concept of drilling across
 - What you need to know about your query and reporting tools
- Conformance and business value
 - High impact business questions span processes
 - The concept of conformance
 - Ensuring subject areas work together
 - Enabling incremental implementation
Module Three
Advanced Fact Table Design

- Transaction schemas
 - Transaction grain
 - Shortcomings of transaction designs
- Periodic Snapshots
 - Snapshot grain and period
 - Semi-additivity, density, and impact on BI
 - Building both transaction and snapshot schemas
 - Snapshots and averages
- Accumulating Snapshots
 - Studying process efficiency
 - Accumulating metrics in a single row
 - Lag analysis
 - Impacts on slow change processing and data integration
 - Building both transaction and accumulating snapshots
- Factless Fact Tables
 - Processes that seem to lack metrics
 - Factless fact tables that track events
 - Pros and cons of adding constant-value fact
 - Factless fact tables that track conditions
 - Comparing conditions to actual events
- Heterogeneous Attributes
 - Attributes that vary based on category
 - The impact of modeling a single set of attributes
 - Core and custom dimensions
 - Core and custom fact tables
 - Alternatives to core and custom solutions

Module Four
Design and Data Integration

- The Data Integration Process
 - Loading a dimension table
 - Loading fact tables
 - Key lookup processing
- Designing to aid key management
 - The impact of slow changes on key lookups
 - Adding attributes to aid lookup process
- Designing to reduce slow change bottlenecks
 - The bottlenecks of slow change processing
 - How dimension checksums aid slow change processing
- Specifying data transformation rules
 - How to capture standard translations and data quality rules
 - Why this must be done at design-time
- Invalid or late reference data
• Receiving valid facts with invalid or missing reference data
 • Adding rows to dimension tables so that facts can be loaded
 • Adjusting facts when reference data arrives

• Adding columns to support QA
 • Housekeeping columns in dimension tables
 • Housekeeping dimensions for fact tables

Day 3

Module Five
Advanced Dimension Design

• Understanding hierarchies
 • Drilling with and without hierarchies
 • Multiple hierarchies in one dimension
 • Impact of hierarchies on BI, ETL and DBA perspectives
 • Why to model hierarchies
 • Snowflake schemas

• Dimension Reuse
 • Modeling roles
 • Querying with roles

• Nulls
 • Problems introduced by NULL values
 • Avoiding NULL dimension attributes
 • Avoiding NULLS with optional relationships
 • NULL facts

Module Six
Advanced Slow Change Processing

• Time-stamped Dimensions
 • Why type 2 is not good enough
 • Time-stamped dimensions (transaction dimensions)
 • Using with a fact table
 • Hybrid attributes that behave like facts and dimensions

• Mini-dimensions (Types 4 & 5)
 • Large and expanding dimension tables
 • The use of a mini-dimension to stem growth
 • Impact on schema capability
 • Type 4 and Type 5 slow changes
 • Loading the mini-dimension

• Current and Previous (Type 3)
 • Limited access to unchanged value

• Hybrid Responses
 • Tracking both Type 1 and Type 2 responses
 • For dimension Attributes (Type 6)
 • For entire dimension tables (Type 7)
Module Seven
Bridge Table Design

- The Dimension Bridge
 - When a single fact needs to reference more than one dimension row
 - The “flattening” option
 - The bridge table
 - Use of the bridge
 - Avoiding double counting with an allocation factor
 - Avoiding double counting by hiding the bridge (sandbox)

- The attribute bridge
 - A dimension attribute repeats for a single dimension row
 - The attribute bridge
 - Use of the bridge and avoidance of double-counting
 - Bridge table vs. factless fact table

- The hierarchy bridge
 - Recursive relationships (ragged hierarchies, unbalanced hierarchies, variable depth hierarchies and instance hierarchies)
 - Flattening and backfilling
 - The hierarchy bridge and its structure
 - Using the bridge to “roll up” a recursive hierarchy
 - Using the bridge to “roll down” the hierarchy
 - ETL implications of hierarchy change and slow changes

Module Eight
Scaling Dimensional Designs

- Scaling and scope
 - Conformance across subject areas
 - Conformed dimensions that are not identical
 - Conformed rollups and overlapping dimensions
 - An advanced conformance matrix

- Derived schemas and performance
 - Merged fact tables
 - Pivoted fact tables
 - Set operations on fact tables
 - Sliced or partitioned fact tables

- Aggregate schemas and performance
 - N-way aggregate design
 - Aggregate portfolio and impact on throughput
 - Aggregates and aggregate navigation

Module Nine
Design Tasks and Deliverables

- Design and data architecture
 - Dimensional design as architecture task
• Design activities
 o Key design activities
 o Resources required for design success
 o Estimating duration of design activities
 o Requirements, top level design, detailed design and roadmap

• Templates for Capturing Business Requirements
 o Subject area definition
 o Metric groups and metric definition
 o Business hierarchies
 o Conformance

• Templates for Capturing Design Requirements
 o Key elements of dimension table design
 o Key elements of fact table design
 o Documenting what is not visible
 o The conformance matrix
 o The design review

• Detailed design
 o Attribute level design of fact and dimension tables
 o Technical design elements (DBA perspective)
 o Business definitions (business perspective)
 o Source to target mappings (integration perspective)

• Roadmap
 o Project definitions
 o Managing scope of implementations

• Implementation approaches
 o Time-boxed projects with iteration
 o Agile projects (with and without up-front discovery)
 o Typical team member roles for implementation projects

Appendix A
Exercises

• Ten modeling exercises designed to reinforce concepts of each module
 o Two are completed during the class (one each day)
 o Students can work through remaining exercises on their own

• Exercise sessions
 o Students are divided into groups of 4-5 to complete the exercises
 o Flip chart or white board must be provided for each group
 o Exercise is discussed by class as a whole upon completion

Appendix B
Exercise Solutions

• Solution pages for each exercise
• Example models and discussion points