Course Agenda, Day 1 of 2

Module One
Fundamentals

- Dimensional Modeling
 - Process measurement
 - Uses beyond database design
- Information Architectures and Dimensional Data
 - Inmon’s CIF Architecture
 - Kimball’s Dimensional Bus
 - Stand-alone Data Marts
- Fundamental Terms and Best Practices
 - Facts and dimensions
 - Surrogate keys, natural keys and slow change processing
 - Fundamental concepts including grain, sparsity and additivity
 - Best practices for fact tables and dimension tables
- Implementations
 - Relational (star and snowflake)
 - Multidimensional (cube)
 - Cubes as primary store
 - Cubes as derived data stores

Module Two
Multiple Stars

- Multiple star solutions
- Designing multiple fact tables
 - Identifying multiple processes
 - Differences in dimensionality
 - The pitfalls of single fact table design
- Using multiple stars
 - How not to query multiple fact tables
 - The concept of drilling across
 - What you need to know about your query and reporting tools
- Conformance and business value
 - High impact business questions span processes
 - The concept of conformance
 - Ensuring subject areas work together
 - Enabling incremental implementation
Module Three
Advanced Fact Table Design

- Transaction schemas
 o Transaction grain
 o Shortcomings of transaction designs
- Periodic Snapshots
 o Snapshot grain and period
 o Semi-additivity, density, and impact on BI
 o Building both transaction and snapshot schemas
 o Snapshots and averages
- Accumulating Snapshots
 o Studying process efficiency
 o Accumulating metrics in a single row
 o Lag analysis
 o Impacts on slow change processing and data integration
 o Building both transaction and accumulating snapshots
- Factless Fact Tables
 o Processes that seem to lack metrics
 o Factless fact tables that track events
 o Pros and cons of adding constant-value fact
 o Factless fact tables that track conditions
 o Comparing conditions to actual events
- Heterogeneous Attributes
 o Attributes that vary based on category
 o The impact of modeling a single set of attributes
 o Core and custom dimensions
 o Core and custom fact tables
 o Alternatives to core and custom solutions

Module Four
Design and Data Integration

- The data integration process
 o Loading a dimension table
 o Loading fact tables
 o Key lookup processing
- Designing to aid key management
 o The impact of slow changes on key lookups
 o Adding attributes to aid lookup process
- Designing to reduce slow change bottlenecks
 o The bottlenecks of slow change processing
 o How dimension checksums aid slow change processing
- Specifying data transformation rules
 o How to capture standard translations and data quality rules
 o Why this must be done at design-time
- Invalid or late reference data
 o Receiving valid facts with invalid or missing reference data
 o Adding rows to dimension tables so that facts can be loaded
 o Adjusting facts when reference data arrives
• Adding columns to support QA
 o Housekeeping columns in dimension tables
 o Housekeeping dimensions for fact tables

Course Agenda, Day 2 of 2

Module Five
Advanced Dimension Design

• Understanding hierarchies
 o Drilling with and without hierarchies
 o Multiple hierarchies in one dimension
 o Impact of hierarchies on BI, ETL and DBA perspectives
 o Why to model hierarchies
 o Snowflake schemas
• Dimension Reuse
 o Modeling roles
 o Querying with roles
• Nulls
 o Problems introduced by NULL values
 o Avoiding NULL dimension attributes
 o Avoiding NULLs with optional relationships
 o NULL facts

Module Six
Advanced Slow Change Processing

• Time-stamped Dimensions
 o Why type 2 is not good enough
 o Time-stamped dimensions (transaction dimensions)
 o Using with a fact table
 o Hybrid attributes that behave like facts and dimensions
• Mini-dimensions (Types 4 & 5)
 o Large and expanding dimension tables
 o The use of a mini-dimension to stem growth
 o Impact on schema capability
 o Type 4 and Type 5 slow changes
 o Loading the mini-dimension
• Current and Previous (Type 3)
 o Limited access to unchanged value
• Hybrid Responses
 o Tracking both Type 1 and Type 2 responses
 o For dimension Attributes (Type 6)
 o For entire dimension tables (Type 7)

Module Seven
Bridge Table Design

• The dimension bridge
 o When a single fact needs to reference more than one dimension row
o The “flattening” option
 o The bridge table
 o Use of the bridge
 o Avoiding double counting with an allocation factor
 o Avoiding double counting by hiding the bridge (sandbox)
• The attribute bridge
 o A dimension attribute repeats for a single dimension row
 o The attribute bridge
 o Use of the bridge and avoidance of double-counting
 o Bridge table vs. factless fact table
• The hierarchy bridge
 o Recursive relationships (ragged hierarchies, unbalanced hierarchies, variable depth hierarchies and instance hierarchies)
 o Flattening and backfilling
 o The hierarchy bridge and its structure
 o Using the bridge to “roll up” a recursive hierarchy
 o Using the bridge to “roll down” the hierarchy
 o ETL implications of hierarchy change and slow changes

Module Eight
Scaling Dimensional Designs

• Scaling and scope
 o Conformance across subject areas
 o Conformed dimensions that are not identical
 o Conformed rollups and overlapping dimensions
 o An advanced conformance matrix
• Derived schemas and performance
 o Merged fact tables
 o Pivoted fact tables
 o Set operations on fact tables
 o Sliced or partitioned fact tables
• Aggregate schemas and performance
 o N-way aggregate design
 o Aggregate portfolio and impact on throughput
 o Aggregates and aggregate navigation

Module Nine
Design Tasks and Deliverables

• Design and data architecture
 o Dimensional design as architecture task
 o Architecture and incremental implementation
 o Implementation without up-front architecture activity
• Design activities
 o Key design activities
 o Resources required for design success
• Estimating duration of design activities
 o Requirements, top level design, detailed design and roadmap
• Documenting requirements (Conceptual design)
 o Subject area definition
 o Metric groups and metric definition
 o Business hierarchies
 o Conformance
• Top level design
 o Key elements of dimension table design
 o Key elements of fact table design
 o Documenting what is not visible
 o The conformance matrix
 o The design review
• Detailed design
 o Attribute level design of fact and dimension tables
 o Technical design elements (DBA perspective)
 o Business definitions (business perspective)
 o Source to target mappings (integration perspective)
• Roadmap
 o Project definitions
 o Managing scope of implementations
• Implementation approaches
 o Time-boxed projects with iteration
 o Agile projects (with and without up-front discovery)
 o Typical team member roles for implementation projects

Appendix A
Exercises

• Ten modeling exercises designed to reinforce concepts of each module
 o Two are completed during the class (one each day)
 o Students can work through remaining exercises on their own
• Exercise sessions
 o Students are divided into groups of 4-5 to complete the exercises
 o Flip chart or white board must be provided for each group
 o Exercise is discussed by class as a whole upon completion

Appendix B
Exercise Solutions

 o Solution pages for each exercise
 o Example models and discussion points