
THE API
OWNER’S
MANUAL

MANFRED
BORTENSCHLAGER

STEVEN WILLMOTT

Best practices of
successful API teams

http://www.3scale.net/

EXECUTIVE SUMMARY

APIs are becoming the digital connective tissue of modern organizations, adding new capabilities
to everything from their operations and products to their partnership strategies. In 2015 it’s no
longer a stretch to say that most organizations don’t ask whether to engage in API programs, but
how to do so. This ebook aims to answer this question by drawing on best practices from leading
practitioners in seven areas key to the success of effective API programs:

1. Focus relentlessly on the value of the API

2. Make the business model clear from the beginning

3. Design and implement with the user in mind

4. Place API operations at the top of the list

5. Obsess about developer experience

6. Go beyond marketing 101

7. Remember API retirement and change management

By the end of this book you will have gained an overview about how a successful API program runs
and holds together, along with best practices about how to make that happen. We’ve included a
number of examples of successful API programs, including Amazon, APIdaze, Context.IO, eBay,
Flickr, Lingo24, Netflix, Pingar, SendGrid, Senzari MusicGraph, Slice, Stripe, and Twilio.

Most importantly, after going through this book, we hope you’ll have asked yourself key questions
about your own plans, and will have the right focus needed to create a valuable API.

We wish you success with your APIs!

2 The API Owner’s Manual: Best practices of successful API teams

TABLE OF CONTENTS

Executive Summary 2

Introduction 5

Strategy for the API 7

The Why 8
Example: Flickr 9
The What 9
The How 11

The API Team 12

BEST PRACTICE #1:
Focus relentlessly on the value of the API 13

Example: Lingo24 17
Example: Amazon Web Services 19
Critical questions for consideration 19

BEST PRACTICE #2:
Make the business model clear from the beginning 21

Example: Netflix 24
Example: Senzari MusicGraph 25
Critical questions for consideration 26

BEST PRACTICE #3:
Design and implement with the user in mind 27

Example: APIdaze 29
Critical questions for consideration 30

BEST PRACTICE #4:
Place API operations at the top of the list 32

Example: Slice 35
Critical questions for consideration 36

3 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #5:
Obsess about developer experience 38

Example: Context.IO 43
Example: SendGrid 44
Critical questions for consideration 45

BEST PRACTICE #6:
Go beyond marketing 101 46

Various Examples: Twilio, Braintree, Pingar APIs 49
Example: eBay 50
Critical questions for consideration 52

BEST PRACTICE #7:
Remember API retirement and change management 54

Example: Stripe 58
Critical questions for consideration 59

Boosting Your API Strategy 60

Conclusions 63

About 3scale 65

Authors 66

4 The API Owner’s Manual: Best practices of successful API teams

INTRODUCTION

APIs have quickly become mission critical for any number of businesses, and their implementation
is increasing. APIs are used for many purposes—internal agility between teams, underpinning
mobile or Internet of Things initiatives, enabling customer integration, or powering a partner
program. No matter what the use case, one thing is clear: API success has become intrinsically
linked to business success. As this correlation becomes stronger, the question is now rarely “Why
implement APIs” but “How can we implement effective APIs?”

While every API program is different, there are a few common practices that teams can use to
evaluate their own approach and ensure success.

This book brings together the 7 most common factors we’ve seen the best API teams adopt
relating to success. These practices may appear simple at first—and indeed, they are, once
adopted—but we often see organizations skip these steps or focus on the wrong targets or
solutions. These failures can easily occur since APIs inherently mix technical and business
concerns, and with many stakeholders involved it can often be difficult to pin down exactly what
the key issues at stake are.

The team running an API might range from a single member tasked with implementation and
operations to multiple teams that range across engineering, operations, product, support,
community, and management. At times an API may be a supporting element for a specific
company product line, or it may be the foundation for an entire company. Whatever the case,
many of the key success factors will remain the same.

In truth, these best practices are not so secret—they’re hidden in plain sight if you know where to
look. In this book we’ll uncover what’s been used by successful API teams, with plenty of examples
for reference.

5 The API Owner’s Manual: Best practices of successful API teams

In our experience there are 7 best practices that are found in almost every successful API program.
While there are other elements of APIs to get right, thinking these through and following up in
execution will move you a long way towards success. The 7 best practices are:

1. Focus relentlessly on the value of the API

2. Make the business model clear from the beginning

3. Design and implement with the user in mind

4. Place API operations at the top of the list

5. Obsess about developer experience

6. Go beyond marketing 101

7. Remember API retirement and change management

While these may seem relatively simple on the surface, there are subtle nuances to each of
them and this is what we’ll be covering in this book. Together, these best practices give a robust
framework to a successful API program.

In each section you’ll see an overview of what the best teams do, then real-life examples, and finally
the five key questions you should ask yourself, your team, and the company to make sure you’re
on track.

The observations and examples come from 3scale’s extensive experience working with hundreds
of production APIs, as well as industry-wide best practice from a range of companies.

Before diving in, a few words on the structure of the book. We first discuss the important aspects
to consider relating to the strategy for your API. After this we described the typical composition and
tasks of an API team, and we cover the 7 best practices one-by-one. Finally, we wrap the book up
with a summary of the key points.

6 The API Owner’s Manual: Best practices of successful API teams

STRATEGY FOR THE API

This book focuses very much on the “how” of APIs rather than the “why,” and is not to be
considered an API strategy guide, although it can still help you formulate some of the questions
that need to be answered. However, a clear overall corporate strategy for your API is an essential
starting point—if you don’t have this you’ll need to define your overall strategy, such as key goals
and metrics before beginning implementation.

Before diving in, it’s worth searching out (or indeed writing down) the key objectives of your API
program for reference. Some of the questions asked later may help flesh it out, validate, or change it.

An effective API program has to build on an organization’s overarching corporate strategy and
contribute to its objectives. You’ll know you have the makings of a great strategy when you can
answer the following three questions in a clear way:

1. Why do we want to implement APIs?

2. What concrete outcomes do we want to achieve with these APIs?

3. How do we plan to execute the API program to achieve that?

If you don’t have answers to these questions, then they have been lost in execution and inertia.
Much of what follows depends on establishing this true north for your program.

A clear overall corporate strategy for your API
is an essential starting point—if you don’t have
this you’ll need to define your overall strategy,

such as key goals and metrics before beginning
implementation.

7 The API Owner’s Manual: Best practices of successful API teams

The Why
People often misinterpret this question in different ways. Firstly, rather than focus on the value
of the API per se, it’s helpful to think of the value of the effect of the API. Remember, it’s the
organization’s core business that’s valuable, not necessarily the API. An API is valuable when it
becomes a channel that provides new types of access to the existing value an organization delivers.

Another common error is the belief that for an API to be valuable in itself, API users must be
prepared to pay for it. This is true only if the API itself is the product. In most models, this is not
the case (this is true for less than 20% of 3scale’s current customers for example). APIs are usually
driving some other metric—pizza sales, affiliate referrals, brand awareness, etc. The value of the
API to users is the result of an API call (service request and response), rather than the call itself.

In our Winning in the API Economy ebook, we sketched out typical uses cases for API providers,
which can be a helpful guideline:

1. To enable mobile as an additional channel

2. To grow ecosystems: customer (B2C) or partner ecosystems (B2B)

3. To develop massive reach, for transaction or content distribution

4. To power new business models

5. To drive internal innovation

The most common business drivers for establishing an API program, according to a recent
survey of 152 organizations conducted by the Cutter Consortium and Wipro, are: to develop new
partnerships, to increase revenue, to exploit new business models, to improve time to market,
and to develop new distribution channels. The top technology drivers are: to improve application
integration, to improve mobile integration, and to support the connection to more devices.

This why clearly needs to be strong enough so that the decision to make an investment in the APIs
is an obvious choice for the organization.

8 The API Owner’s Manual: Best practices of successful API teams

http://www.3scale.net/api-economy/ebooks/winning-in-the-api-economy/
http://www.cutter.com/benchmark/fulltext/2014/01/index.html
http://www.cutter.com/benchmark/fulltext/2014/01/index.html
http://www.cutter.com/benchmark/fulltext/2014/01/index.html%20

EXAMPLE: FLICKR1

Originally created as an online game, Flickr quickly evolved into a social photo sharing
sensation. The launch of the API helped Flickr to quickly become the image platform
of choice for the early blogging and social media movement by allowing users to easily
embed their Flickr photos into their blogs and social network streams.

One of Flickr’s key drivers for exposing APIs—in other words the why—was to more
effectively grow their partner ecosystem. The Flickr API is the driving inspiration behind
the concept of BizDev 2.0, a term coined by co-founder Caterina Fake to describe their
policy of requiring companies to use the API to develop applications.

The company would only contact companies who had successfully attracted users, which
increased efficiencies in how Flickr engaged with its partners and allowed it to rapidly
build a network of trusted, high value partners.

The What
The second question should be “What concrete outcomes do we want to achieve with these APIs?” In
other words “what do the APIs actually do and how do they impact on the wider business strategy?”
In strategy theory, both the concepts of the internal view and the external view of an organisation
can help to define the what of the API.

The internal view refers to specific and valuable assets an organization possesses. The more
valuable, rare, inimitable, and non-substitutable—also often referred to as VRIN assets—the more
suitable it’s for the what of an API. An organization that has unique data could leverage this by
allowing access to the data via API. Facebook is one of the world’s most popular media owner, their
content gets a lot of “likes,” and Facebook is the only provider who can open up access to the
number of likes of a piece of content. That makes this content and the API that allows access to this
content extremely valuable.

1  This example is taken from the 3scale white paper The Platform Vision of API Giants written by the API Evangelist Kin Lane.

What concrete outcomes do we want
to achieve with these APIs?

by
 K

in
 L

an
e 

◆

9 The API Owner’s Manual: Best practices of successful API teams

http://www.3scale.net/resources/

The external view is related to everything outside of an organization, such as market dynamics,
trends, competitors, customer behaviors, etc., which are macro-environmental drivers and industry
forces. Macro-environmental drivers are political, economic, social, and technological, as well as
industry forces such as competition, buyers, suppliers, substitutes, or new entrants (cf. Michael E.
Porter’s Five Forces). This external view affects every business strategy—including thinking about
what an API should do.

An example about how external events can influence strategy is the success of the Google
Maps API. Another supplier of geographic information was Navteq, and arguably a Google Maps
competitor. Google API is open, but Navteq did not have an API. Navteq was struggling, then
bought by Nokia, and then rebranded to HERE. HERE now does provide an open API and a fully-
fledged developer program. Waze is a startup that from the beginning provided a public API for
their traffic and navigation data and used this as the backbone of their growth strategy.

Another example is the fitness domain Fitbit, which offered their activity tracker and fitness
products together with a public API to foster innovation and grow their ecosystem. They disrupted
giants in this market such as Nike and Adidas, and both soon decided to leverage APIs to support
their strategy.

When deciding about what an API should do for a business, both internal and external views
need to be examined. The decision about the what is then usually a combination of the two. The
illustration below shows how internal and external views can help finding the right what for an API
program.

In concrete terms, while the why is unlikely to change often, the what may vary significantly based
on external factors such markets, technical considerations, or economic conditions. Also, internal
directions about the value of an asset may change, which could also affect what should be
achieved with an API.

External View
5 Forces, PEST

Tactics
Strategic Fit
Business Model
Technology
Marketing
Operations

Internal View
VRIN Capabilities

10 The API Owner’s Manual: Best practices of successful API teams

http://www.hbs.edu/faculty/Pages/profile.aspx?facId=6532
http://www.hbs.edu/faculty/Pages/profile.aspx?facId=6532
http://en.wikipedia.org/wiki/Five_forces_analysis
https://www.here.com/
https://www.waze.com/
https://www.fitbit.com/

The How
The final question, “How do we have to design the API program to achieve what we want?” is all about
implementation and execution. The how is really what this book is all about. The how covers
many further questions such as:

� What technology is used to build the APIs?

� How are they designed?

� How are they maintained?

� How are they promoted inside the organization or marketed to the outside world?

� What resources are available?

� Who should be on the team?

� How do we track success against the business goals that have been set?

While we will not be able to answer all these questions (indeed we cannot since they are different
for every organization), hopefully the 7 best practices will help provide a framework for making
these decisions.

Lastly, before jumping into content, a word on the notion of an API team and who should be on it.

11 The API Owner’s Manual: Best practices of successful API teams

THE API TEAM

An API team is really most akin to a “product” team—whether your customers are internal or
external, you are in charge of building, deploying, operating, and optimizing the infrastructure
others depend on.

Just like product teams, API teams can also be very diverse, but typically they should include
a product-centric person who acts as the keeper of strategy and goals, design-focused team
members who ensure best practice in API design, engineers who put in place API technology,
and operations folks who will ultimately run the API. Over time you may also have others involved
including support and community team members, API evangelists, security representatives, and
others.

While this could be a large number of people, in smaller organizations some individuals might wear
many hats. The important thing is to try to ensure that all the ultimate stakeholders’ opinions are
represented—even just by one of the team members checking in on their concerns.

In many cases API teams are formed temporarily and may belong to different organizational units
with different line managers. This can make it particularly challenging to define a common vision for
the API. For very large API programs different API teams may have to collaborate together.

No matter how large or small your organization, the 7 best practices that are described in this book
will help establish a successful API team—and it may end up including more people than you think!

In many cases API teams are formed temporarily
and may belong to different organizational units

with different line managers. This can make it
particularly challenging to define a common vision

for the API.

12 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #1

FOCUS RELENTLESSLY
ON THE VALUE OF
THE API

“Q: Frank, what does our API do?

A: JSON, I think.”

API programs often take on an inertia of their own, and with so many moving parts it’s easy to get
wrapped up in details and miss the most fundamental building block of a great API Program: the
value being delivered.

In John Musser’s five “keys” to a great API, providing a valuable service is the starting point for
everything:

1. Provide a valuable service

2. Have a plan and a business model

3. Make it simple, flexible and easily adopted

4. It should be managed and measured

5. Provide great developer support

The first key, provide a valuable service, is especially important when thinking about the “why.” In
Building Great APIs: The Gold Standard (I) we discuss this in detail, the main takeaway being that it
can be really challenging to find the right value proposition.

13 The API Owner’s Manual: Best practices of successful API teams

http://www.slideshare.net/jmusser/what-makes-a-great-open-api
http://www.slideshare.net/jmusser/what-makes-a-great-open-api
http://www.3scale.net/2012/11/building-great-apis-the-api-gold-standard-part-i/
http://www.3scale.net/2012/11/building-great-apis-the-api-gold-standard-part-i/

The value proposition is the main driver for success of the API. If an API has the wrong value
proposition (or none at all) it will be very difficult or impossible to find users. The best marketing
tactics won’t work because there is no user group out there that finds the API valuable. Conversely
you may find users with needs that could be met with a certain proposition, but if it’s not one
aligned with corporate objectives it will be difficult to sustain. If this is the case, in the long run the
API program may lack the decision maker’s buy-in, and financial commitment.

However, almost any company with an existing product, digital or physical, can generate value
through an API, if that API links to existing offerings and enhances them. As long as the API is
structured in such a way that it covers meaningful use cases for developers, it will deliver value.

One way to formalize your API value proposition is by using Alex Osterwalder’s Value Proposition
Canvas, which describes the benefits users can expect from your API. The right-hand side
represents the user profile, which clarifies how you understand your users. The left-hand side is
the value map, which describes how you intend to define your API to create value for the users.
When the right and left sides meet, you achieve “fit,” and the canvas can be used to define and
refine this.

In other words, fit is when users get excited about the value of your API, which happens when you
solve important jobs, alleviate extreme pains, and create important gains that users care about.

Source: Osterwalder et al. (2014)

Gain Creators

Pain Relievers

Pr
od

uc
ts

 &
 S

er
vi

ce
s Gains

Pains

Custom
er Jobs

14 The API Owner’s Manual: Best practices of successful API teams

http://www.businessmodelgeneration.com/canvas/vpc
http://www.businessmodelgeneration.com/canvas/vpc

What does this mean in API terms?
Finding and describing the value of your API is an iterative process. The first step is describing the
jobs your users are trying to get done, e.g.:

 � Automatically sending urgent communications to team members in emergency

 � Backup critical files to ensure they are never lost

 � Sample data to detect certain events

Next, identify particular pain points that affect users before, during, or after trying to get a job done:

 � Ensuring reliability of sending with multiple tries, detecting failure, worrying about many
messages being sent rather than just one, and integrating with different message
delivery systems depending on the location of the user

 � Ensuring safe delivery of the files but also wanting to minimize the amount of transfer
bandwidth

 � Dealing with massive amounts of data and attempting to correlate that in real time

The third step on the user profile side is to summarize the potential gains a user could achieve:

 � Sending other types of notifications, which create opportunity rather than warn of threat

 � Get rid of other storage equipment if reliability is good enough

 � Automatically trigger actions based on the events

Switching to the value map side, the first step is to lay out the main functionality of your API in
terms of features. Also, add non-functional aspects and additional services. Think rather broadly
and list things like support, documentation, or developer portals, everything that a user could
consume. Next, outline how you intend to eliminate or reduce some of the things that may be
annoying to API users before, during, or after trying to complete a job, or issues that prevent them
from doing so. Osterwalder in his model refers to these as pain relievers. Then describe how you
intend to create gains of any sort for your API users.

15 The API Owner’s Manual: Best practices of successful API teams

Through engaging in this process, our three examples above might result in:

 � A multi-channel messaging API with a single call to deliver messages and the ability to
retry automatically until arrival is guaranteed (e.g., Twilio, PagerDuty)

 � A storage synchronization API with optimized calls to efficiently check if new versions
should be synchronized (e.g., Bitcasa, Box)

 � An API aggregating several data sources into a configurable stream, which could be
filtered, sampled, and easily manipulated (e.g., GNIP, DataSift)

Finally, a useful clarification exercise is to compose several statements that make the fit between
the API and the user profile clear. If you find it hard to identify such fit statements, then the API
model needs to be reconsidered. Maybe there are API features which need to be added, revised,
refined, or eliminated. It could also be that your API does offer great value, but you are trying to
address the wrong type of users.

When you then condense and abstract your fit statements into one overarching statement it
becomes your value proposition for your APIs. In the case of the messaging API above this might
be something like:

Our messaging API provides enterprise developers a reliable,

guaranteed, no-latency text messaging functionality for highly-critical

business applications. The API is also supported by SDKs covering

the most popular programming languages for quick integration.

In some cases you may be thinking “this seems complete overkill—ours is just an internal API”. This
may be a natural reaction, but such a focus on value is key even in internal use cases. A poorly
determined value proposition will lead to a lot of brown bag lunches to try to pitch the API to other
teams. A well-defined one makes the API program a key contributor to the business.

When you then condense and abstract your fit
statements into one overarching statement it

becomes your value proposition for your APIs.

16 The API Owner’s Manual: Best practices of successful API teams

EXAMPLE: LINGO242
Tech-savvy translation agency Lingo24 is an interesting case of APIs and strategy in
action. Their translation APIs enable direct access to the Lingo24 translation platform,
connecting two streams of translation services and providing a range of flexible solutions
for high-quality “translation on tap” via two APIs:

 � The Business Document API provides access to Lingo24’s professional
human translation services. These are a range of service levels from post-edited
machine translation to creative copywriting in a foreign language, across all major
document formats.

 � The Premium Machine Translation API provides access to Lingo24’s premium
machine translation engines. Free for up to 100,000 words in pairs of English,
French, and Spanish, with further paid plans that offer more words and access to
more languages.

Why did Lingo24 want to open
APIs via an API program?
Traditional translation solutions often couldn’t address the range of customer content
or rapid deadlines required, particularly for larger customers with diverse needs across
business functions. Lingo24 wanted to open up their translation platform via an API
program in order to provide easier, deeper integration with existing and new customers
who value simplified and automated workflows. They also wanted to engage with
channel partners, to grow a partner eco-system, and allow those partners to embed
translation within their solutions as a value-add. This would enable the development
community to build on their service.

2  This Lingo24 API example was contributed by David Meikle and Steve Griffin.

by
 D

av
id

 M
ei

kl
e

an
d

St
ev

e
G

riffi
n 

◆

17 The API Owner’s Manual: Best practices of successful API teams

http://www.lingo24.com/
https://developer.lingo24.com/

What did Lingo24 want to achieve
with the API program?
In a market typically characterized by low-cost, variable quality commodity offerings,
translation quality and client experience are core to Lingo24’s business strategy. They
wanted to be able to deliver highly-customizable solutions based on a customer’s type of
content or business priority. Their API program would enable them to integrate directly
with customers to automate translation workflows, and work closely with them as
partners—which is what their enterprise customers were really looking for.

Their API program served as an extension of their strategy by building on existing
translation assets and technologies—such as their Premium Machine Translation
engines that focus on specific business domains, and their Coach Computer Assisted-
Translation tool—enabling easy access for customers to use these services.

How did Lingo24 design the API
program to achieve this?
To design their API program, Lingo24 first looked at their key resources and services.
They asked how those resources and services matched with the market by exploring
various customer profiles, what those customer were looking for in a translation service,
and how an API would fit with them. They used this information to develop a product
vision and roadmap for their API offering. The roadmap was used, not only to frame
and prioritize their development effort, but also to enable early conversations with
prospective customers and partners.

While developing the roadmap, it became clear that they needed the two distinct
offerings: a machine translation-based offering that would provide direct access to raw
machine translation, and a professional human translation. This was necessary since
the two services had different pricing structure needs, sales and marketing challenges,
and scalability requirements. Although they split their offering across two APIs, they were
conscious to develop a shared developer portal using the 3scale platform. This created
one clear point of access to Lingo24 development resources, and a consistent way of
interacting with users. The shared developer portal also provides a single integration
point for both their sales and global support functions.

18 The API Owner’s Manual: Best practices of successful API teams

https://developer.lingo24.com/

EXAMPLE: AMAZON
WEB SERVICES3

The AWS API story is well known, where Amazon CEO Jeff Bezos issued his famous
mandate in 2002. This mandate basically stated that all teams internally have to expose
data and functionality via interfaces. Also, all these services must be externalizable. The
rest is history. It worked so well, that Amazon at some point noticed that some of the
services can also provide immense value to external developers and that these services
could also be monetized. The external APIs to Amazon S3 and EC2 were born.

Developers using the Amazon S3 API were charged $0.15 per gigabyte per month for
storing files in the cloud. Amazon EC2 users were charged varying rates for each small,
large, or extra-large server they launched, paying only for every hour that the server was
actually running. Amazon S3 combined with Amazon EC2 has provided a blueprint for
the next generation of software engineering and business, where APIs are at the core.
With this new type of API-driven business model Amazon is one of the key responsible
players in the field of IaaS (Infrastructure-as-a-Service), which delivered huge value to
developers and, in fact, changed software and business models.

Critical questions for consideration
To help define your own API Program’s value consider these five questions:

1. Who is the user?

� This question should be answered in terms of their relationship to you (are
they existing customers, partners, external developers), their role (are they data
scientists, mobile developers, operations people) and their requirements or
preferences.

3   Most of this example is taken from the 3scale white paper The Platform Vision of API Giants written by the API Evangelist
Kin Lane.

by
 K

in
 L

an
e 

◆

19 The API Owner’s Manual: Best practices of successful API teams

http://www.3scale.net/resources/

2. What user pain points are we solving or what gains are we creating for the user?

 � This question should be answered in relationship to the customer’s business,
pains and gains from the value proposition canvas, and whether or not a critical
need is being fulfilled (is it a pain point, is it a revenue opportunity), and what
metric is being improved for the user (speed, revenue, cost saving, being able to
do something new).

3. Which use cases are supported with your API?

 � Identify (e.g., with the help of the value proposition canvas) those pain relievers or
gain creators that are most effective. Plan your API to address these use cases.

4. How can the value for the user be expanded over time?

 � Plan your value proposition with future changes in mind. What are important
upcoming milestones relating to internal or external changes (such as trends or
technological innovations).

5. What value is being created for your organization internally?

 � Consider internal benefits and how the API can be of value within the business,
e.g., to other teams.

20 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #2

MAKE THE BUSINESS
MODEL CLEAR FROM
THE BEGINNING

“Don’t invent a business model for your API.

Create an API that supports your business model.”

Being able to articulate the value of an API is already a great start on the API journey. However, APIs
also generate cost, and this consideration should be balanced by value. While the value may not be
measured in monetary terms, it must be real.

In fact—even for an API that delivers great value—if the business model does not add up, the end
result may be a rapidly accelerating source of cost which, in a worst-case scenario, may ultimately
have to be shut down or refocused.

In his crowd-created book Business Model Generation Alex Osterwalder defines the business
model of an organization as “how the organization proposes, creates, delivers, and captures value.”
As such, a business model is much more than just “who pays.” It involves a range of different
aspects of an organization, such as what resources, activities, and partnerships are necessary for
production and operation, and what is the required cost structure. For a business model to work,
an adequate and addressable market needs to be available. The business model also describes
served customer segments, the distribution channels to reach the customers, and the revenue
model. The revenue model is part of the business model and describes how an organization
monetizes its products or services.

The question starts with what is the existing core business of the organization, and then extends to
how an API can be used to accelerate or augment it. A great way to understand an organization’s
business model is to map it out via the Business Model Canvas.

21 The API Owner’s Manual: Best practices of successful API teams

http://businessmodelgeneration.com/book
https://twitter.com/AlexOsterwalder
http://www.businessmodelgeneration.com/canvas/bmc

The Business Model Canvas
Using the Business Model Canvas will help to analyze the core elements of the business model and
their relationships in a structured way. The canvas takes into account:

1. Value proposition

2. Revenue streams

3. Cost structure

4. Customer segments

5. Customer relationships

6. Channels

7. Key partners

8. Key activities

9. Key resources

Being able to articulate the value of an API is already
a great start on the API journey. However, APIs

also generate cost, and this consideration should
be balanced by value. While the value may not be

measured in monetary terms, it must be real. In
fact—even for an API that delivers great value—if

the business model does not add up, the end result
may be a rapidly accelerating source of cost which,
in a worst-case scenario, may ultimately have to be

shut down or refocused.

22 The API Owner’s Manual: Best practices of successful API teams

In some cases APIs can lead to entirely new business opportunities outside of the existing business
model of an organization—but even in that case, they generally leverage existing assets or
expertise to do so in new ways.

In summary, these are the reasons why determining the right business model is important for
effective APIs:

1. It brings the value of the API to the organization into focus, which drives the decision
regarding long-term commitments to the API program. Without that commitment
there are rarely the resources in place to complete many of the tasks required for
establishing and running an effective API program.

2. It helps to define the functionality of the product, which is needed to satisfy third
parties and actually drive the business model.

3. It ensures consideration regarding roles and responsibilities within an organization,
and about who retains which parts of the value generated by the API. This also implies
defining what users of the API gain and how that balances against what the API
provider gains.

Source: Osterwalder et al. (2010)

23 The API Owner’s Manual: Best practices of successful API teams

Without a clear business model (which should be considered internally along with ideally being
communicated to customers and partners) the API risks being an appendage that doesn’t deliver
value and is unlikely to be sustained.

EXAMPLE: NETFLIX
Netflix is without a doubt one of the pioneers when it comes to APIs and API strategy.
What is interesting is how Netflix used APIs to support their business model. When
they first launched their API program, they decided to open the API to the public. They
seemed to do everything right: provided a solid developer portal with sample code,
documentation, forums, or showcases. They had people covering developer relations
and engaged in events such as hackathons.

However, Netflix noticed that a public API program did not contribute to their business
model in a significantly valuable way. Early in 2013, they decided to shut down the public
API program. Their decision was to use the power of APIs primarily internally, and only
open it to very few selected trusted partners. Netflix created a modern API and one of
the most cited microservices architecture. This allowed the company to scale into the
cloud, grow internationally, and now is able to serve over 1,000 different devices and
operating systems.

The decision to close a public API program down and use APIs only internally is surely a
difficult one. But for Netflix this was a necessary change to create better value for their
business. Many may label Netflix’s public API program a failure, however it’s not: Netflix
started as a David against Goliath. Having a public API program initially helped them to
increase brand awareness, which clearly is one necessary driver for their current success.
Also, other companies competing with Netflix started to adopt APIs, which is why APIs are
now a very common practice in the media and entertainment sector.

What is interesting is how Netflix used APIs to
support their business model. When they first

launched their API program, they decided to open
the API to the public.

24 The API Owner’s Manual: Best practices of successful API teams

http://apievangelist.com/2013/03/12/netflix-api-is-much-more-than-a-public-api/
http://nginx.com/blog/microservices-at-netflix-architectural-best-practices/

EXAMPLE: SENZARI
MUSICGRAPH4

The MusicGraph API is an adaptive recommendation and personalization engine
delivered via a simple graph API that allows users to search through more than 7 billion
music facts and connections.

Senzari offers significantly more cost-effective plans for companies of any size and
budget to start building creative products and services powered by an intelligent,
scalable, and context-aware music recommendation engine. They use a graph model to
semantically connect the data (user and music data) and offer unparalleled flexibility and
personalization capabilities for their customers.

The MusicGraph API offers:

 � Context: MusicGraph integrates with a wide range of sources: social media,
peer-to-peer, Wikipedia, Spotify, MusicBrainz, taking into account what is popular
locally, etc. This provides rich contextual data for a significantly improved
personalization and recommendation experience.

 � Cost: Senzari offers the most cost-effective music recommendation and
intelligence solution in the market today. Starting at $1,000 per month, the
barrier to entry is much lower than the competition.

 � Music Intelligence: Senzari offers the only music-specific analytics and intelligence
(machine learning) platform, MusicGraph.AI, allowing customers to derive critical
insight from the massive volumes of user and musical data stored in their
semantic graph.

An API is at the core of Senzari’s business vision and development efforts, using the
company’s core assets to offer key services such as Graph Search, Playlisting, Musical
Data, and Social Signals.

4  This Senzari API example was contributed by Koen van Erp.

by
 K

oe
n

va
n

Er
p 

◆

25 The API Owner’s Manual: Best practices of successful API teams

https://developer.musicgraph.com/

Critical questions for consideration
To align the business model for your organization’s use of APIs, consider the following questions:

1. What value does the API create for the organization?

 � The value of an API may not only include monetary value. This question can
be answered by thinking about how the API helps the organization, and could
include analyzing how to increase reach, innovation, or leveraging network effects
for content distribution.

2. How do we capture that value?

 � Once you understand what the value is, think about the best mechanism to
capture the value and how to lower the barriers for doing so as much as possible.

3. What costs are occurring and how do we cover them?

 � Think about which costs are related to the API. These will most likely also lie
outside of the API team, such as engineering or marketing efforts.

4. What resources need to be committed on a long-term basis?

 � You need to keep in mind that an API project is not a one-off investment. The API
needs to be operated and maintained.

5. Which strategic partnerships are necessary?

 � When you develop your API and go to market you are surrounded by partners
and suppliers. Try to find and leverage complementary offerings.

26 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #3

DESIGN AND IMPLEMENT
WITH THE USER IN MIND

OH: Apologies—the calls aren’t completely RESTful.

Good API design has some core principles, which may differ in implementation. The authors of
APIs: A Strategy Guide have a great analogy:

Every car has a steering wheel, brake pedals, and an accelerator.

You might find that hazard lights, the trunk release, or radio are
slightly different, but it’s rare that an experienced driver can’t figure

out how to drive a rental car.

This level of “ready to drive” design is what great API teams strive for—APIs which require little or no
explanation to the experience practitioner when they encounter them.

Our design treatment here will be high level, but for more resources describing the functional
elements and their technical implementation, see API Codex, RESTful Web APIs, or APIs: A Strategy
Guide. The principles of good API design are closely aligned with John Musser’s third key: “make it
simple, flexible and easily adopted”. We discuss this topic in depth in the API Gold Standard (II)
post.

Simplicity
Simplicity of API design depends on the context. A particular design may be simple for one use
case but very complex for another, so the granularity of API methods must be balanced. It can be
useful to think about simplicity on several levels, including:

27 The API Owner’s Manual: Best practices of successful API teams

http://shop.oreilly.com/product/0636920021223.do
http://apicodex.3scale.net/
http://shop.oreilly.com/product/0636920028468.do
http://shop.oreilly.com/product/0636920021223.do
http://shop.oreilly.com/product/0636920021223.do
http://www.slideshare.net/jmusser/what-makes-a-great-open-api
http://www.3scale.net/2012/11/building-great-apis-the-gold-standard-ii/

1. Data Format: Support of XML, JSON, proprietary formats, or a combination.

2. Method Structure: Methods can be very generic, returning a broad set of data, or
very specific to allow for targeted requests. Methods are also usually called in a certain
sequence to achieve certain use cases.

3. Data Model: The underlying data model can be very similar or very different to what is
actually exposed via the API. This has an impact on usability, as well as maintainability.

4. Authentication: Different authentication mechanisms have different strengths and
weaknesses. The most suitable one depends on the context.

5. Usage Policies: Rights and quotas for developers should be easy to understand and
work with.

Flexibility
Making an API simple may conflict with making it flexible. An API created with only simplicity in
mind runs the risk of becoming overly tailored, serving only very specific use cases, and not leaving
enough space for others.

To establish flexibility, first find out what the potential space of operations is based on, including
the underlying systems and data models, and defining what subset of these operations is feasible
and valuable. In order to find the right balance between simplicity and flexibility:

1. Try to expose atomic operations. By combining atomic operations, the full space can
be covered.

2. Identify the most common and valuable use cases. Then design a second layer of
meta operations that combine several atomic operations to serve these use cases.

Arguably, the concept of HATEOAS can further improve flexibility because it allows runtime
changes in the API and in client operations. HATEOAS does increase flexibility by making versioning
and documentation easier, however, in API design, essential questions about the space of potential
operations and combinations need to be answered just the same.

28 The API Owner’s Manual: Best practices of successful API teams

http://en.wikipedia.org/wiki/HATEOAS

EXAMPLE:
THE APIDAZE5

The APIdaze API exposes a real-time communications infrastructure to web developers.
An audio/video/text conference bridge able to support many network users is accessible
through a simple JavaScript API. Low level telecom functions like phone number
management, phone provisioning, and account management are also manageable from
a HTTP/REST API. And finally, a third programming interface lets developers control how
phone and video calls get processed, by triggering webhooks built by developers using a
simple HTTP/XML language.

The main idea behind APIdaze API is to make a set of hardware and software
components achieving low level networking and telecom functions programmable for
web developers. This implies picking the right interfaces that web developers will use,
and therefore there is a need to make it as simple as possible to drive the underlying
communications platform. Currently JavaScript, REST, and webhooks are familiar to
anybody who gets involved in developing a web application.

JavaScript is obviously a must, as we can see it now on both the client (web browser) and
the server side (Node.js, and its extensions like Meteor) of a web application. Having a
client-side JavaScript API to control audio/video/text sessions from multiple browsers is
a powerful and easy way to get developers involved, just like they would use jQuery to
manage the DOM elements of a web page.

The HTTP/REST interface has a different goal, since it provides a set of synchronous and
atomic actions to APIdaze’s underlying infrastructure. Should a developer need to place
a phone call between two people, manage SIP (Session Initiation Protocol) devices, or
get phone numbers, this is the interface that they would use, which should be familiar to
any web developer who knows HTTP/REST web services. This HTTP/REST interface is not
HATEOAS based, and APIdaze has its documentation fixed in that regard. This is mostly
because, for the sake of simplicity, it has not been considered in the original development
of this part of the API.

5  This APIdaze API example was contributed by Philippe Sultan.

by
 P

hi
lip

pe
 S

ul
ta

n 
◆

29 The API Owner’s Manual: Best practices of successful API teams

http://www.apidaze.io/

APIdaze also provides a way to relay events that happen within the infrastructure. If a
phone call is coming in to a phone number owned by the developer, a program has
to become aware of this event and take the appropriate action, like forwarding the call
to a voicemail box. XML based HTTP webhooks come into play here. For an incoming
phone call a URL is immediately fetched by APIdaze, which returns a set of instructions
written by the developer to run on the platform in real time. Even though XML tends to
be less popular than JSON (mostly because of the advent of JavaScript), any programming
language can be used to yield XML text, or even no programming language at all.

APIdaze offers free access to its API, so developers can play, test it, and eventually get
engaged to run their applications. Working on having great, clear documentation is also a
day-to-day task for the technical team.

Critical questions for consideration
In order to think through your API design, consider the following five questions:

1. Have we designed the API to support our use cases?

� The next step after identifying the main use cases as we described in the earlier
chapter is to design the API so that it supports these use cases. Flexibility is
important so as not to exclude any use cases that may be less frequent, but
should still be supported to allow for innovation.

2. Are we being RESTful for the sake of it?

� RESTful APIs are quite fashionable at the moment. However, you should not
follow this trend just for the sake of that. There are use cases which are very well
suited for it, but there are others which favor other architectural styles.

3. Did we just expose your data model without thinking about use cases?

� An API should be supported by a layer that abstracts from your actual data
model. As a general rule, don’t have an API that goes directly to your database—
although there may be cases which require that.

30 The API Owner’s Manual: Best practices of successful API teams

4. Which geographic regions are most important and have we planned our data centers
accordingly?

 � API design must also cover non-functional elements such as latency and
availability. Make sure to choose data centers that are geographically close to
where you have most of your users.

5. Are we synchronizing the API design with our other products?

 � If the API is not the sole product of your business make sure that the API design is
coordinated with the design of the other products. It may well be that you decide
to completely decouple API design from other products. However, even in that
case this need to be made clear and communicated accordingly internally as well
as externally.

31 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #4

PLACE API OPERATIONS
AT THE TOP OF THE LIST

Q: Frank, How many developers are calling our APIs per day?

A: Not sure, but the last time we had more than 100

concurrent users it took the servers down…

Textbooks define operations management as “the activities, decisions and responsibilities of
managing the production and delivery of products and services.” In line with that, API operations
is all about managing APIs once they are live to make sure that APIs are accessible and deliver
according to developers’ expectations. This boils down to two main functions:

1. Streamlining internal processes to be efficient to reduce cost.

2. Making operations effective in order to meet the expectations of developers’ external
to the program.

This notion ties in to John Musser’s fourth key to a great API: It should be managed and
measured.

In the API Gold Standard III article we analyzed in detail what and how that can be achieved. We
now cover an additional tool that should help getting API operations right: the API Operations
Donut.

Streamlining internal processes to
be efficient to reduce cost.

32 The API Owner’s Manual: Best practices of successful API teams

http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000464175
http://www.3scale.net/2013/10/great-apis-need-api-mngmt-part-iii/

API Operations Donut
Operations management theory suggests five key performance objectives:

1. Dependability

2. Flexibility

3. Quality

4. Speed

5. Cost

The donut can be used to define operations tactics to achieve an organization’s API strategy. The
inner circle of the donut represents an organization’s internal activities and effects; everything
outside of the ring are external effects.

Source: adapted from Slack: Operations Management 7th edition

Cost

DependabilitySpeed

Quality Flexibility

Internal

External
Va

lu
e

fo
r

m
on

ey

Pe
rc

ei
ve

d
va

lu
e

Availability,

downtime

Quotas

Latency
Throughput

Redundancy,

spike arresting

Rate limits

Caching
Throttling

SL
As,

au
to

mati
on

DX,

eva
nge

lis
ts

Meet

exp
ecta

tio
ns

Su
pport,

docu
mentat

ion,

deve
loper

pro
gr

am

Maintenance

of options
Versioning

Technical: supported

protocols of formats

Business: change/cancel

price plans

API releases

Al
l 4

ob

je
ct

ie
ve

s

33 The API Owner’s Manual: Best practices of successful API teams

http://www.3scale.net/2015/01/effective-api-programs-apis-and-strategy/
http://www.pearsoned.co.uk/bookshop/detail.asp%3Fitem%3D100000000464166

Dependability
Dependability is the actual availability of the API to developers. A useful metric is the downtime,
which an organization can achieve through redundancy or spike arresting. Another metric is a
quota (with rate limits as an internal control), which defines how many API calls can be made by a
developer within a certain time frame. A quota protects an API and makes its management more
predictable. Also, some API providers’ business models (and price plans) are based on quotas.

Flexibility
Flexibility relates to the options developers have in adopting APIs. This could be manifested in
technical options (see “Design and implement with the user in mind”) or business options, e.g.,
the possibility or simplicity of changing between price plans or cancellation. The internal means is
version control and versioning. It should be clear that, in general, the more flexibility provided the
more effort (and cost) the organization needs to bear internally.

Quality
Quality is the consistent conformance to developers’ expectation and influences their satisfaction.
As such, quality is an overarching performance objective, which is related to the four other
objectives. Conforming to expectations can be achieved by defining and meeting service-level
agreements. Streamlined and purposeful automated processes can improve internal efficiency
and contribute positively to quality.

Speed
Important aspects related to the speed objective in API operations are access latency and
throughput. Both can internally be influenced by such techniques as throttling or caching.
Throttling in particular (like quotas) can also be used for defining an API providers’ business models.

Cost
The cost objective is to provide the best value-for-money relation to developers. Internally that
means to optimize costs wherever possible without hampering the experience (i.e., perceived
value and quality) of customers. Depending on context and implementation, all the other four
performance objectives contribute to the cost objective either directly or indirectly.

34 The API Owner’s Manual: Best practices of successful API teams

At a minimum configuration we suggest to having at least the following means in place for your API
management:

1. Access Control: authentication and authorization systems to identify the originator of
incoming traffic and ensure only permitted access

2. Rate Limits and Usage Policies: usage quotas and restrictions on incoming traffic
volumes or other metrics to keep traffic loads predictable

3. Analytics: data capture and analysis of traffic patterns to track how the API is being
used

It’s important that the API operations strategy fits into the overall API and business strategy. API
management solution efforts and resources should be in line with the importance and scale of the
API itself.

It should be noted that there are several vendors that provide technical infrastructure for many of
these operations challenges—we at 3scale included. In many cases, using a vendor is a great and
cost-effective way to address these problems, but this does not mean the strategy should not be
thorough.

EXAMPLE: SLICE6

Slice has built a powerful data-extraction engine that connects to any email inbox,
identifies the ecommerce receipts contained in that inbox, and extracts item-level
purchase information from those receipts. This data-extraction engine has powered the
Slice consumer apps (available from www.slice.com) for five years. In 2014, Slice officially
launched the Slice API (at developer.slice.com), opening the same engine up to third-
party developers building new experiences around their users’ purchase data. In addition
to supporting several large financial institutions, the Slice API has powered such diverse
use cases as Gone!, a service that helps consumers sell their old stuff; IFTTT, a service
that connects APIs together; TheFind, an aggregated ecommerce search engine; and
many more.

6  This Slice API example was contributed by Victor Osimitz.

by
 V

ic
to

r O
si

m
itz

 ◆

35 The API Owner’s Manual: Best practices of successful API teams

http://www.3scale.net
http://www.slice.com
https://developer.slice.com/

Slice’s key performance objective in building the API was flexibility. Since the applications
of this technology are so diverse, it was important to be able to support everybody from
large banks, which have substantial development resources and long time horizons, to
tiny startups and hackathon projects, which are quick and nimble but strapped for time
and resources.

Slice found that their development partners were divided into two camps: some that
wanted complete control over their user experience and were willing to invest the time to
do a full white-label of the Slice platform, and others that wanted a quick integration and
were comfortable using OAuth to “link an existing Slice account.” Initially, Slice expected
to have to pick one integration method to support at the expense of the other, but they
realized that the two were almost the same except for the authorization method that
they would use. In fact, the API requirements for both groups of developers were almost
exactly the same: both simply needed a way to retrieve orders, purchased items, and
shipment information for specified users that had authorized Slice to share their data.

Ultimately, Slice decided to support two types of authorization: vanilla OAuth 2.0,
and a signature-based method for power white-label integrations. Since this decision
added significant complexity to the API, Slice implemented its developer portal in such
a way that most developers would only be aware of the OAuth integration method.
Furthermore, Slice’s API team made an extra push on simplicity elsewhere, described
by a product manager as “scalpel-driven design,” because this first step was to delete
75% of the fields in the original API spec. This ensured that—for the majority of smaller
developers who were interested in an OAuth integration—the API would be simple and
straightforward, while also maintaining flexibility to support larger partners who were
willing to make the investment for a white-label integration.

Critical questions for consideration
To work through your API operations plans, consider the following questions:

1. How do we control access?

� Access control is one of the most important elements of API operations,
including knowing who can access your API, who does what and when, along with
ultimately being able to enforce limits around this.

36 The API Owner’s Manual: Best practices of successful API teams

2. How do we capture metrics and handle alerts?

 � Next to access control, getting as much visibility about what’s happening with
your API during operations is key for API success. This is where analytics come
into play. Based on your objectives and use cases you will have different metrics
and it’s important to measure them accordingly, and to have an alert system in
place.

3. How should spikes be managed?

 � Access control and usage policies will help you to plan your infrastructure. Spikes
will happen for different kinds of reasons, and we recommend having fallback
mechanisms in place like spike arresting or automatic throttling.

4. Who is responsible for API uptime?

 � API uptime is one of the most important metrics. An available API is what
generates value according to your value proposition. No API, no value generated
and captured. It needs to be clear who is responsible and what needs to be done
in case of a failure.

5. How do you deal with undesired API usage?

 � In general, there are two types of undesired API usage: expected and
unexpected. Expected is what you can plan for via a good API operations
approach in place. The unexpected is a lot more difficult and can mostly be
handled by Terms and Conditions or similar regulations.

37 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #5

OBSESS ABOUT
DEVELOPER EXPERIENCE

“Getting information off the Internet is like
taking a drink from a fire hydrant.”

(Mitchell Kapor)

While developer experience (DX) may sound like it’s about API Design, it goes much further—think
of it as the packaging and delivery of the API, rather than the API itself. You can have a wonderfully
designed REST API but if it’s hard to sign-up for and test, you’ve created an awful developer
experience.

Having a great API that’s designed with simplicity and flexibility is wasted if developers do not
engage with the API and eventually adopt it. At the same time, a well thought out API design has a
considerable impact on developer experience and adoption. Adoption is an essential part of the
developer experience (DX).

John Musser provides a great take on what it means to get developer engagement in his OSCON
2012 talk:

 � Making it very clear what the API does

 � Providing instant signup

 � Providing free access

 � Being transparent about pricing

 � Having great documentation

38 The API Owner’s Manual: Best practices of successful API teams

http://www.brainyquote.com/quotes/quotes/m/mitchellka163583.html?src=t_internet
http://www.slideshare.net/jmusser/what-makes-a-great-open-api
http://www.slideshare.net/jmusser/what-makes-a-great-open-api

A key metric to improve API design for easy adoption is the Time To First Hello World (TTFHW).
This is great way to put yourself in the shoes of a developer who wants to use your API to see what
it takes to get something working.

When you define the start and end of the TTFHW metric, we recommend covering as many
aspects of the developer engagement process as possible. Then optimize it to be as quick and
convenient as possible. Being able to go through the process quickly also builds developer
confidence that the API is well organized, and things are likely to work as expected. Delaying the
“success moment” too long risks losing developers.

For poster child examples of good developer experience and quick TTFHW, check out the Twilio,
SendGrid, or Context.IO developer portals. Twilio’s Founder and CEO Jeff Lawson has a great take
on this from a wider business perspective.

In addition to TTFHW, we recommend another metric: TTFPA – Time To First Profitable App. This is
trickier, because “profitable” is a matter of definition, depending on your API and business strategy.
Considering this is helpful because it forces you think about aspects related to API operations as
part of the API program.

TTFHW should be the main driver when building DX into your API product. There are several
means to achieve that, all of which are summarized in a developer program. This element of an
API program correlates to John Musser’s fifth and last key for a great API: “provide great developer
support.”

Crafting a Developer Program
The aim of an effective developer program is to provide outstanding developer experience (DX).
Pamela Fox puts it this way:

Developer experience (DX) is the sum of all interactions

and events, both positive and negative, between

a developer and a library, tool, or API.

39 The API Owner’s Manual: Best practices of successful API teams

http://www.twilio.com/
https://sendgrid.com/docs/index.html
http://context.io/
http://www.slideshare.net/500startups/2012-08-un-sexy-inverting-sales-13917193
https://twitter.com/pamelafox

The two underlying principles of developer experience are:

1. Design a product or service that provides a clear value to developers and addresses
a clear pain or gain. This can be monetary value along with other value, such as a way
to increase reach, brand awareness, customer base, indirect sales, reputation for the
developer, or the pure joy of using great technology that works.

2. The product needs to be easily accessible. This can include having a very
lightweight registration mechanism (or none at all), access to testing features, great
documentation, and a lot of free and tidy source code.

Hopefully the first point flows easily from some of the thinking in best practices #1 and #2.

Building up on the core principles of developer experience, we suggest that most API programs
should have a developer program—regardless if you expose your APIs publicly, to partners only,
or internally only. A developer program should in general cover the following elements in a certain
shape or form:

1. Developer portal

2. Community building

3. Evangelists

4. Events

5. Communications and social media

6. Pilot partners and case studies

7. Acceleration via ecosystem partners

8. Measuring

The provisions may be more or less elaborate depending on the audience.

40 The API Owner’s Manual: Best practices of successful API teams

Developer Portal
The developer portal is the key element of a developer program; this is the core entry point for
developers to signup, access, and use your APIs. Getting access to your API should be dead-simple
and frictionless for developers, who should be able to get started quickly. TTFHW is the best metric
to measure this. You should also consider streamlining the sign-up process—the simpler and
quicker, the better. A recommended best practice is that developers should be able to invoke your
APIs to examine their behavior (request and response) without any sign-up at all. Interactive API
documentation based on industry standards like Swagger are a great way to achieve that. Also,
supplementary content such as getting started guides, API reference documentation, or source
code are great to lessen the learning curve.

Developer
Portal

Pilots /
Case Studies

Community
Building

Acceleration

Measure

Ev
an

ge
lis

t

Ev
en

ts

Co
m

m
s

So
ci

al
 M

ed
ia

The developer portal is the key element of a
developer program; this is the core entry point for

developers to signup, access, and use your APIs.

41 The API Owner’s Manual: Best practices of successful API teams

http://swagger.io/

Community building
Community building broadly has two aspects: a physical and a virtual presence. Where and how
you appear in both aspects depends on which developer personas you want to address. Physical
presence refers to events, which are a great opportunity to get the word out about your API
program in order to promote its benefits, and to increase adoption. It’s also valuable to get in
touch with your community and meet the developers face-to-face, which often leads to very useful
insights and can influence future design and implementation of the API or the API program. These
types of events include large developer conferences, developer days, barcamps, hackathons,
workshops, or trainings.

Developer evangelists
The role of a developer evangelist is fairly new. There are several resources on the Web which
describe this role in more detail. Next to the developer portal, an evangelist is another key element
of a successful developer program. The Onion model of developer evangelists summarizes some
of the most important types of activities of an evangelist. This model is also scalable. It can be
applied to a one-man-band evangelist, as well as to a team of evangelists.

Pilot partners and case studies
Engaging with pilot partners can be very effective. These are usually early adopters who you work
closely with you to adopt your APIs. Getting engaged with pilot partners has two main advantages.
First, you get early and useful feedback about your technology being deployed in a real-life setting,
and it can be improved accordingly. Second, if the pilot works out nicely, it can be used as a
successful case study example for general promotion and awareness activities. It also shows that
your technology works and what’s possible with it.

Acceleration via ecosystem partners
As an API provider you are operating in an ecosystem of partner and vendors. These partners
often have their own content distribution and communication networks and means.

We recommend identifying alliances, which can be effective in helping to increase the adoption of
your API. Often such alliances can be found when APIs are complementary and provide value to
developers when combined.

42 The API Owner’s Manual: Best practices of successful API teams

http://developer-evangelism.com/
http://manfredbo.tumblr.com/post/62604896521/ignite-talk-at-over-the-air-bletchley-park
http://www.slideshare.net/3scale/how-to-use-donuts-and-onions-for-scaling-api-programs

Measuring
Only what’s measured can be managed. Measuring is an important element of the developer
program in terms of understanding its effectiveness and to find out which aspects should be
improved. The developer program contributes to the objectives of the API program and business
strategy, and should be the starting point for deriving metrics. Some examples for typical metrics
for the developer portal are page visits, signups, API traffic, or support requests. Events can be
measured by the number of attendees, API adoption at hackathons, or leads. It’s advisable to
create correlations, such as “did a talk at an event trigger more API signups?” Swift has an insightful
presentation about the Nuts and Bolts of Developer events.

EXAMPLE:
CONTEXT.IO7

At Context.IO you often hear the term “developer experience” in conversations on a daily
basis, which is part of every decision made. Context.IO is constantly thinking of ways to
improve the experience for customers—and it can always be better.

The biggest hurdle for the company has been at the very beginning; getting developers
to understand the value and wide range of use cases for Context’s API. Context.IO takes
the complexity out of connecting to email servers and enables developers to easily build
apps on top of their user’s email data. If a developer has ever tried to work with IMAP
or Exchange, they understand the value almost immediately. It may take a bit longer for
others, in which case Context.IO usually runs through a handful of app examples until the
“lightbulb moment” appears.

Another early step is prompting the developer to connect an email account they control
via Context.IO’s interactive console, which is how “TTFHW” is reduced to seconds. The
client can make requests against their own email account and see responses without
setting up a dev environment or writing any code. The console on the Context.IO website
is a great way for developers to rapidly consider options, and learn what Context.IO can
do. Client libraries are easily available on Github when it’s time to dive into writing code.

7  This Context.io API example was contributed by Tony Blank.

by
 T

on
y

Bl
an

k 
◆

43 The API Owner’s Manual: Best practices of successful API teams

https://twitter.com/SwiftAlphaOne
https://www.youtube.com/watch?v=bGvlyzOrUM0
https://context.io/

After a developer has had a chance to try out the API, someone from the Context.IO
Evangelism team follows up with each and every one of the new users to make sure they
don’t have any outstanding questions or problems. While this “high touch” approach has
scaling issues and may not be practical depending on many companies’ new customer
volume, Context.IO has gotten an incredible amount of value out of these efforts. New
API users have the best feedback on how to improve onboarding. Not only do those early
conversations help improve resources, but a conversation can smooth over any issues
early users may experience.

As developers become more familiar with the API, an often-seen occurrence is for them
to think up new and unique ways to use Context.IO. Email as a data source has limitless
use cases, so it’s useful when something new is revealed. Documentation is usually
complete enough for developers to get started, but if something is missing or Context.IO
doesn’t have the answer, the company works collaboratively with the developer to
figure it out.

Overall, it’s fair to say Context.IO has a pretty “high touch” approach to developer
experience. It’s absolutely more work, time, and money than other approaches but, at
the end of the day, the great results and the information collected is invaluable.

EXAMPLE: SENDGRID
SendGrid—the company that sends and manages emails via APIs—is another great
example of DX done right. The SendGrid developer portal incorporates most of the best
practices we summarize in this book and we recommend checking it out. Right from
the start SendGrid understood the power of communities and one of the key objectives
was to build a thriving one around the SendGrid APIs. This article about SendGrid
describes their four layers of focus: developer education, startup outreach, DX, and
events. It also describes the seven metrics they use to determine how effective their
activities are. SendGrid evangelist Martyn Davies presented another interesting metric,
“beer driven adoption,” at the API Strategy and Practice conference. Finally, developer
evangelists are crucial for the SendGrid API success. Here is an experience report about
how SendGrid hires.

44 The API Owner’s Manual: Best practices of successful API teams

https://sendgrid.com/
https://sendgrid.com/developers
http://cmxhub.com/from-startup-to-rapid-growth-how-sendgrid-scaled-their-developer-evangelist-strategy-as-they-reached-critical-mass/
https://sendgrid.com/blog/how-i-evaluate-a-developer-evangelist-candidate/

Critical questions for consideration
Questions to consider to assess your developer experience:

1. How do we explain the value of the API in the first five minutes?

� Develop an “elevator pitch” about the value proposition of your API that best
speaks to developers.

2. What is our TTFHW and TTFPA and how do we reduce it?

� This is a powerful way to improve the developer friendliness of your API by
thinking about the end-to-end TTFHW. We recommend keeping TTFHW/TTFPA
in mind with all elements that are added to the DX (like portals), and every aspect
that changes.

3. What is the onboarding process for developers, and is it as painless as possible?

� This needs to be in line with the use cases of your API, and needs to be
appropriate. The level of security naturally needs to be higher for more sensitive
APIs or data access, which probably needs more formal agreements. For
everything else it should very simple and straightforward to allow for early
developer success (TTFHW).

4. Are we leaving enough on the table to make the API attractive for developers?

� It’s great if you’ve found the right value proposition, and developers sign up for
your API. Keep in mind that helping them to be successful will retain and grow
their numbers.

5. How do we support developers if they face problems?

� In general we believe in the self-service approach, which will help you to scale.
Many developer questions can be covered by good documentation, FAQs, or
forums. But self-service has its limits, and for more in-depth questions or, e.g.,
invoice problems, there should be some type of support mechanism in place.

BONUS: What support is there for developers who go rogue outside of the normal use cases to do
something new—how good is our documentation?

45 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #6

GO BEYOND
MARKETING 101

“Throw a couple of hackathons,

add beer and pizza, we’re done.”

Not quite. The marketing of APIs is often seen as a little unsavory (developers often reject the idea
they should be marketed to) or simplified to a notion that hackathons are the key way to attract
users to the API. While there are some techniques specific to APIs (like hackathons), in truth APIs
needs to be marketed just as any other product does.

Marketing is about bringing the right product to the right customer in the right way. The same is
true for marketing the API program. Marketing depends on the product. After the value of the API
is defined, it’s the responsibility of the marketing program to establish it in the market, and get it to
developers. A great framework to achieve this is Segmentation, Targeting, and Positioning (STP). We
use this framework and explain how each stage can be applied to the marketing of an API program.

Segmentation
Customers of an API provider are people or companies that develop software, regardless of the
scope of an API. There are various audiences that may have to be taken into account as different
segments for API marketing:

1. Completely internal usage

2. Exposing the API to close partners or suppliers

3. End users of the apps or services resulting from API integrations

4. External companies or developers

46 The API Owner’s Manual: Best practices of successful API teams

Marketing an API program is mostly about developer marketing—also often referred to as
business-to-developers (B2D). Estimations by the WIP Factory claim that there are some 43 to
50 million developers globally, which is the total addressable market. Clearly that is too large and
diverse to appeal to and engage with a compelling product offer. The total market needs to be
divided into smaller developer segments, with particular characteristics and behavior in mind.

A great way to establish developer segments can be done via the jobs-to-be-done method.
VisionMobile applied this approach to mobile developers and came up with a classification model
of 8 groups. This could be used as part of the segmentation exercise for your API marketing
strategy.

To achieve the segments specific to your organization the WIP Factory developer segmentation
methodology could be used. This method applies filters to the total market, which reveals the
varying segments. These filters are broken into four imperatives:

1. Technical: this relates to platforms, operating systems, programming languages, or
tools.

2. Individual: this relates to skills and the experience or persona of developers (which is
similar to the psychographic dimension as mentioned above).

3. Business: this relates to the types of companies or organizations, their market
position, supply chain position, or financial strength.

4. Market: this relates to secondary markets. That means these are markets dependent
on the prime market, such as suppliers, buyers, or other depending verticals.

After applying each iteration of a filter check whether the resulting segments are relevant, large
enough, or valuable to your API program, and whether there’re the necessary resources to address
these segments.

At the end of this exercise you will have identified various segments. The next step is to choose the
most relevant and valuable one(s), which is referred to as targeting.

47 The API Owner’s Manual: Best practices of successful API teams

http://www.wipfactory.com/strategy/
http://www.visionmobile.com/product/developer-segmentation-2014/
http://www.wipfactory.com/strategy/
http://www.wipfactory.com/strategy/

Targeting
In marketing, targeting is the process of evaluating each market segment’s attractiveness and
selecting one or more segments to enter. To select the most important developer segments, take
into account the following characteristics:

 � The selected segment is accessible. The segments is only of value if it can be realistically
reached. If you, for instance, don’t support a particular programming language or
architecture stack or if you cannot reach a certain developer community geographically
then addressing this developer segment will be very difficult.

 � The selected segment is substantial. There should be a critical mass of developers in
your segments. Also check if the community is active and growing. You may not want to
choose a segment which is disappearing.

 � The selected segment is differentiable. The various segments you choose should be
sufficiently different. In that case a differentiated set of tactics that addresses them will
make sense and become effective.

If your selected segments pass these tests then proceed to the next step, which is to define tactics
to address these target groups of developers, in other words, positioning.

Positioning
Marketing textbooks define positioning as “arranging for a product to occupy a clear, distinctive,
and desirable place relative to competing products in the minds of the customer.” By now you will
have a good understanding of the profile of your selected developer segments. Positioning actually
means applying your marketing tactics and capturing the developer segments you decided to
address. The best marketing is targeted and presents a product—an API in our case—that solves
important jobs, alleviates extreme pains, and creates important gains that users care about, as we
described in the Value Proposition Canvas above.

If you target several developer segments, then your positioning will differ. Make sure that you
understand the pains and gains of the selected target segments, and specify your positioning
tactics accordingly.

48 The API Owner’s Manual: Best practices of successful API teams

http://www.amazon.com/Principles-Marketing-Edition-Philip-Kotler/dp/0132390027

Developers are people too and they have a very high bullshit detector. That’s why it’s very
important to use tactics that are specific to developers. Getting the developer experience (DX) right
as described in the previous section is a crucial element. Some of the most effective tactics are:

� Working with developer evangelists

� Providing outstanding developer portals

� Participating in and supporting developer events

� Providing support and lightweight processes (e.g., registration)

VARIOUS EXAMPLES:
TWILIO, BRAINTREE,
AND PINGAR
An often-cited example related to successful API marketing is Twilio, which provides
an API to enable communication via voice and messaging, like SMS. They’ve placed
offices physically in markets that are important to them: US (San Francisco, Mountain
View, New York), Europe (London, Munich, Tallinn), and Bogotá in Colombia. Their
API documentation, tutorials, and processes are very clear, simple to use, and quick.
Although Twilio provides also a plain Web API, they know that their most active developer
communities are around programming languages such as PHP, Ruby, Python, C#, and
Node.js. That’s why Twilio provides helper libraries for exactly these languages. Finally
Twilio is also known for their active event engagement with developer evangelists. Ricky
Robinett is a developer evangelist at Twilio and gave a great talk about “Being Alfred:
Serving developer communities and making heroes.” Other programs Twilio ran to attract
developers includes the Twilio Heroes and the Hacker Olympics.

Developers are people too and they have a very
high bullshit detector. That’s why it’s very important

to use tactics that are specific to developers.

49 The API Owner’s Manual: Best practices of successful API teams

https://www.twilio.com/
https://speakerdeck.com/apistrat/being-alfred-serving-developer-communities-and-making-heroes
https://speakerdeck.com/apistrat/being-alfred-serving-developer-communities-and-making-heroes
https://www.twilio.com/conference/hackerolympics

Another interesting example of a company which targets different segments with
different API programs is PayPal. PayPal provides and operates two payment APIs as
products: the PayPal API and the Braintree API. Braintree has gotten a lot of positive
developer mindshare especially among “long-tail” developers via a public API. The PayPal
API remains the first choice for close enterprise customers and is accessible via an API
partner programs. Tactics for targeting developers in these two different segments
are completely different. For the PayPal API it’s in many cases 1:1 marketing and sales
engagements, for the Braintree API it’s a lot more 1:n, and similar to what Twilio is
doing, like working with developer evangelists. It seems that in the particular case of
Braintree most developers use iOS, JavaScript, and Android on the client side, and on the
server side Ruby, Python, PHP, Node.js, Java, and .NET, which is why SDKs are provided
accordingly.

An example of a company that exposes APIs only to a closed set of partners is Pingar.
Pingar offers an enterprise search solution which, based on document analysis
algorithms, provides new value from masses of unstructured data. The partner program
is closed. Pingar only executes very targeted marketing addressing key verticals such as
legal, financial services, HR, pharmaceuticals, and government. With their API program,
Pingar grew its business development and developer channel to 80 mostly enterprise
partners and customers in three months. Using the Pingar API, Fuji Xerox has solved the
issue of producing metadata for storing documents while scanning them from paper,
greatly reducing the time it takes to digitize an office.

EXAMPLE: EBAY
Without a doubt the eBay API is one of the longest-standing API programs, and often
cited as an example of an API success story. And for eBay, exposing APIs to their platform
to allow developers executing eCommerce functions was definitely was a huge success.
60% of eBay revenue is generated via 3rd party applications using the eBay API.

eBay was also one of the first API providers who planned and executed a dedicated
developer marketing program. eBay’s developer segments and targets after the API
launch in 2000 evolved and changed over time. It first started aimed at only at few
selected partners, who had to obtain a special license. eBay soon noticed that in order to
achieve the desired reach they needed to open up access, which also required a stronger
self-service model of their developer program. The result was the eBay developer portal.

50 The API Owner’s Manual: Best practices of successful API teams

https://www.paypal.com/us/webapps/mpp/partner-program
https://www.braintreepayments.com/
http://pingar.com/solutions/api-server/
https://go.developer.ebay.com/
https://hbr.org/2015/01/the-strategic-value-of-apis

eBay Developer Portal, around 2001 (Source)

eBay Developer Portal, now

51 The API Owner’s Manual: Best practices of successful API teams

http://www.programmableweb.com/news/depth-tour-ebay-api/2013/03/25

Critical questions for consideration
Consider these questions when planning your API marketing activities:

1. What type of audience are we trying to reach with the API: Internal Users? Close
Partners? Existing customers? The outside world?

 � The answer to this question is critical and may not be obvious at first—your
API may go through several stages of evolution—ensure you’re focused on the
current key user set first.

2. If we decide to work with evangelists, what type of evangelists are most appropriate to
support the value proposition of your API?

 � Experts who can promote your API internally or externally using the right
language, i.e., evangelists, are always recommended. The role of an evangelist is
very diverse and expertise in various areas may be needed (engineering, support,
sales, product management). It’s important to identify what expertise is the most
important for your API.

3. Which events are most appropriate for communicating our message?

 � There are a wide variety of events that could be relevant for API providers.
Horizontal events vs. vertical/industry events, global vs. local, conference vs.
hackathon, formal vs. informal. Depending on your API and what you want to
achieve will determine why and how you want to get involved in specific events.

4. Are we sure a hackathon is the right event for the API?

 � Hackathons are very en vogue nowadays. Whenever someone has a software
product that should be promoted the answer is often to do a hackathon, which
can be very effective. However, before running a hackathon it’s important to be
clear about what you want to achieve (developer portal signups, SDK downloads,
new apps, recruiting, brand recognition), and then plan and execute the event
accordingly.

52 The API Owner’s Manual: Best practices of successful API teams

5. Should there be an Internal Marketing plan?

� For outward-facing APIs the audience is often defined by the customer set.
However, don’t necessarily assume there shouldn’t be internal marketing: other
business units may need to buy in, the marketing department may need in-depth
explanations, and product teams must understand how the API benefits existing
customers, etc.

53 The API Owner’s Manual: Best practices of successful API teams

BEST PRACTICE #7

REMEMBER API
RETIREMENT AND
CHANGE MANAGEMENT

“An API is for life, not just for Christmas.”

API advice tends to focus heavily on API design, creation, and operation. However, one of the most
critical segments of the API journey is what happens many months after launch and operation—
managing updates to the API, and even retirement.

APIs are integration points for software—software that’s often written specifically to work with a
particular API, and hard wired to operate in a certain way. While there are some techniques (such
as hypermedia) which can help loosen this dependency, some dependency will always remain—
if an API goes away or changes radically the dependent software will no longer work. Such a
breakdown without warning to users will destroy confidence in the API rapidly, and potentially even
create legal issues. At the very least it causes a ripple of urgent work for users/customers, and at
worst will cause them to go elsewhere.

Source: Twitter

54 The API Owner’s Manual: Best practices of successful API teams

https://twitter.com/adymitruk/status/571008148519022592

Source: Twitter

The cost of such changes climbs rapidly in cases where:

� The developers/apps using the API are unknown (e.g., there are no keys, IDs, or means to
contact individuals maintaining client code).

� Apps are deployed on mobile devices which require vendor approval and customer
assent to update code.

� Apps are deployed on physical/hardware devices with little or no update capability or UI.

Each of these makes client code updates extremely painful.

However, the reality is that sometimes APIs need to change—new features are needed, and old
ones can no longer be supported. Sometimes entire APIs may need to be retired.

55 The API Owner’s Manual: Best practices of successful API teams

https://twitter.com/jeremybrooks/status/570444141156442112

Breaking vs. non-breaking changes
When initiating updates to an API it’s important to determine what type of change is being made:

1. New methods: new methods are being added to the API, but the existing methods
are unchanged.

2. Augmentation of existing methods: these are changes to existing methods but
they are additive—adding new data to existing return types, or allowing additional
parameters which modify the return type.

3. Removal of methods: some of the existing methods will no longer operate in the
new version.

4. Modifications of existing methods that change current behavior: changes to
existing methods which remove data or options, change payloads, or otherwise
change the way things work.

Different organizations use different definitions of types of changes, but typically changes of type
1 & 2 are considered non-breaking changes—in other words, clients using the old API version
should in general still function despite the changes (see below however). Changes of type 3 and 4
are breaking changes—in other words, applications using affected methods will clearly no longer
function under the new version.

Knowing which type of change is being made is critical. As a best practice we strongly recommend
that breaking changes are accompanied by a new major version number change (e.g., v1 to v2) and
a migration plan between versions. Whereas non-breaking changes can be addressed by a minor
version increment and no migration plan.

A migration plan is a rollout of the new API, which allows for an adjustment period with the old API.
In other words:

 � The new version is made available for testing and use.

 � A notice is released as early as possible warning current API users of a limited lifetime of
the old version (if appropriate).

 � After assisting users with the transition the old version is retired.

56 The API Owner’s Manual: Best practices of successful API teams

When non-breaking changes break
Unfortunately, changes that often appear harmless and non-breaking ultimately end up breaking
applications. This can occur when:

� Developers make unwarranted assumptions on API call returns, e.g., the order of
elements in a JSON/XML payload.

� Unexpected additional returned data overloads an application.

� A parameter previously passed by accident by some applications is suddenly used in a
new version of the API with a different meaning.

� A format, data type, header or other change which seems innocuous (e.g., shift to
HTTPS... you are using HTTPS right?) affects some clients.

It can be extremely difficult to be certain changes won’t break some apps. For these reasons we
strongly recommend that absolutely any changes to the API, even if categorized as “non-breaking,”
should be rolled out by: 1) providing a test endpoint with the new version prior to launch and, 2)
sending an email or other communication to developers informing them of the change and giving
timing/details.

Communication and the contract
Things go wrong — this is quite normal. The most important thing if this happens is to
communicate what went wrong and not to leave developers in the dark. Tell them what went
wrong, why, and (most importantly) what to do about it. As a preemptive measure, terms of service
are critical. These should always include how long you plan to support each version. Of course, try
to stick to those commitments, and if that’s not possible, communicate it accordingly. Informing
developers about changes—positives and negatives—ahead of time builds confidence. It also
provides a reliable framework for decisions. One effective way of keeping developers informed
about changes is by using automatic tools such as API Changelog.

57 The API Owner’s Manual: Best practices of successful API teams

https://www.apichangelog.com/browse

The end of the line
One day the time may come that an entire API may need to be retired. In many ways this is just a
more complex version of a breaking change. However, you may additionally want to consider:

 � Even longer lead time retirement notice.

 � Considering whether there will be press impact.

 � Providing a migration plan for your API users.

 � Providing export / extract tools in those cases that the API was a key interface to
customer data.

EXAMPLE: STRIPE8

One interesting implementation of API change management is the Stripe API. Stripe
is an online payments platform and, as such, has fairly stringent requirements for API
stability—broken integrations are measured in literal dollars lost, not just frustrated
developers.

The approach they’ve taken with their API is to handle change management invisibly. The
contract Stripe has with their users is simple: once someone starts using the API they’ll
never have to worry about their integration being broken and will rarely need to care
about what version they’re on. Under the hood, Stripe has a separate (dated) API version
for each breaking change. Whenever a user makes their first API request, Stripe records
what the current API version was and going forward returns requests to that user to the
current version.

Of course, you can still upgrade your API version or pass a version override via API headers.
However, the majority of users don’t really care about doing this and therefore probably
won’t. By default your API should just work while requiring as little from users as possible.

(For more detail how Stripe’s API is designed and implemented, they’ve written several
blog posts about it.)

8  This Stripe API example was contributed by Amber Feng.

by
 A

m
be

r F
en

g 
◆

58 The API Owner’s Manual: Best practices of successful API teams

https://stripe.com
http://amberonrails.com/move-fast-dont-break-your-api
http://amberonrails.com/building-stripes-api/

Critical questions for consideration
Are you ready for the API long haul? Consider the following questions:

1. What is our customer guarantee and how do we ensure commitment?

� This is arguably the most critical question for your API program—what level
of service stability are you willing to commit to for your users? This is not only
important for potential users who are considering buying into your API, but also
for you in terms of fixing change policies.

2. What is our change and breaking change process?

� This is derived from the answer to question 1. Given this user guarantee, what
is the release process that ensures this commitment is not violated? Who is
involved? What approvals are needed for change?

3. Do we detect, document, and communicate changes to developers?

� Are you using an API definition format such as Swagger or Blueprint? Is
the current model checked against the previous version? How is change
communicated?

4. How do we detect if and how many user still use older versions of the API, and how do
we support retired versions?

� Do you have developer and user IDs to determine version usage among
clients? Without a clear detection and retirement support process there may be
unfortunate consequences.

5. How do we align API evolution with the evolution of related products?

� Given the guarantee to customers for API stability, how aware is the product
organization of these commitments, and what happens if product needs require
API change?

59 The API Owner’s Manual: Best practices of successful API teams

BOOSTING YOUR API
STRATEGY

The best practices in this book will help define and implement an effective strategy for your API.
They also will help evolve your API strategy and spot new opportunities. It’s likely many of the
questions in the previous sections need to be answered in great detail, and new opportunities or
risks may arise over time. For example:

 � Are there ways to expand the value of the API to the customer?

 � Is future maintenance sufficiently provisioned for?

 � Is enough being left on the table for developers to genuinely engage?

It’s great to have found and implemented the value proposition and strategy of your API. The best
practices from this book will hopefully assist in delivering that value.

Things still change all the time however, and your API and related offerings will have to change
too, in order to remain valuable for your users. On a general level there are four main drivers for
environmental change:

1. Industry forces: The API space is young and moving quickly. New competitors may
appear or provide services that could replace your API.

2. Market forces: The user demands may change. Market segment attractiveness may
shrink, or profit margins may decrease.

3. Macro-economic forces: Change in global market conditions or capital markets could
affect the propensity of your user’s budgets.

4. Trends: Technology trends are changing all the time. XML was the de facto format a
while ago. Now it’s JSON. What’s next? There may be other trends such as regulatory
mandates, e.g., demanding higher (potentially more expensive) security standards.

60 The API Owner’s Manual: Best practices of successful API teams

The following framework by Thor Mitchell is useful in planning for evolution and risks, and
specifically relates to the ongoing evaluation of your API and its value.

The graph plots expected/unexpected usage of your API by users on the vertical axis vs. desired/
undesired on the horizontal. The usage indicator on the top right hand quadrant is what you are
designing and hoping for, but other outcomes could also occur.

Your strategy will be sound and survive longer if:

� You have plenty of strong use cases matching potential customers in the top right
quadrant.

� Your API is flexible enough to also allow for innovative uses. And you may choose how
much you open the API (in terms of access and functionality) for unbounded innovation
in the bottom right quadrant.

� You have considered potentially negative use scenarios and taken API Design, Operations
(e.g., access control, rate limits), and other measures to prevent them (top left quadrant).

� You have planned out mechanisms for detecting and blocking behaviors on the
“undesired unexpected” side (bottom-left quadrant). Terms and Conditions at the very
least allow you to shut down unexpected behavior if necessary.

Source: Thor Mitchell (2014)

Expected Use of Your API

Not so
Good

Oh-Oh...

Yay!

Innovation

Undesired Desired

Expected

Unexpected

61 The API Owner’s Manual: Best practices of successful API teams

https://twitter.com/ThorMitchell

The strategy for your API may need reevaluating if:

� You are relying too much on “unexpected” innovation (in the bottom right quadrant) to
carry the day in terms of value. This “build it and they will come” approach can work if
there is also a strong infrastructure to support it. However, if you’re not able to come
up with strong use cases you and your users care about, it may be time to rethink the
approach.

� If there are constant questions about possible negative behaviors within the organization,
then this likely suggests not enough measures have been taken or internally
communicated to eliminate undesirable users.

� If your API is constantly compromised and people are attempting to exploit it in
unexpected ways, this suggests that there is value in the API but it’s not aligned with the
value you were intending to create.

62 The API Owner’s Manual: Best practices of successful API teams

CONCLUSIONS

The purpose of this ebook is to summarize what API teams of successful API programs do and
extract those best practices. To help you learn from others who have achieved API success, we
identified the following 7 crucial best practices:

1. Focus relentlessly on the value of the API

2. Make the business model clear from the beginning

3. Design and implement with the user in mind

4. Place API operations at the top of the list

5. Obsess about developer experience

6. Go beyond marketing 101

7. Remember API retirement and change management

We hope they will be useful in guiding some choices you make, or at least in guiding some of the
questions asked. Here are some final notes from our observations

� Most of the observations are simple to grasp. But it does take discipline.

� Everything starts with being very clear about the value of the effect of your API.

� Make sure you understand your business model and how the API program needs to be
established to support it.

� Cover all 7 best practices.

� If you don’t have answers to some of the key questions in each section, it’s worth taking
the time to evaluate and answer them. The results may surprise you.

� Be clear that things change, all the time. Don’t make the strategy for your API a static
document.

63 The API Owner’s Manual: Best practices of successful API teams

Based on our experience of working with our customers and observations in the API economy in
general we can summarize some signs indicating valuable API programs:

� An API is adopted by users because its of value to them: It does an important job. It
relieves a pain for them. Or it creates a gain for them.

� An API continues to provide value for users, and delivers a value proposition and strategy
that changes according to changing environments.

� An API is valuable to the organization internally. So, it does something important and
helps the organization achieve significant objectives.

� As many stakeholders as possible (ideally all) are happy.

Special Thanks
We would like to thank the various people who contributed

the case studies to this ebook:

David Meikle and Steve Griffin for the Lingo24 case study.

Koen van Erp for the Senzari case study.

Philippe Sultan for the APIdaze case study.

Victor Osimitz for the Slice case study.

Tony Blank for the Context.IO case study.

Amber Feng for the Stripe case study.

64 The API Owner’s Manual: Best practices of successful API teams

ABOUT 3SCALE
3scale is the leading self-serve API Management Platform built with performance, customer control,
and excellent time-to-value in mind. 3scale makes it easy to open, distribute, control, and monetize
your APIs. No other solution delivers so much power, ease, and flexibility in such a cost effective
way. More APIs are powered by 3scale than any other vendor because our unique management
architecture and self-serve approach serve all categories of APIs, and all types and sizes of
customers. Learn more about how it works, or sign up for your free account and start exploring for
yourself.

Developer Portal

API Management System

Signup

Forums Active
Docs Keys

Alerts

Policies Billing

Analytics

$

Your Backend Systems

Traffic Managers
Code
Plugin Gateway CDN

$

Usage

Policy

Your APIs

Mobile IoT Devices Apps

Billing

Dashboards

65 The API Owner’s Manual: Best practices of successful API teams

http://www.3scale.net/
http://www.3scale.net/how-it-works/
http://www.3scale.net/signup/

AUTHORS MANFRED
BORTENSCHLAGER
Manfred (@ManfredBo on Twitter) is an API geek and
evangelist. He blogs about topics related to APIs and
developer evangelism, and curates articles about API
strategy and technology for the API Magazine.

In his day job, Manfred is API Market Development
Director at 3scale.net. His job involves educating
markets about the value of APIs and about how to

implement effective API programs.

STEVEN WILLMOTT
Steven (@njyx on Twitter) was previously the
research director of one of the leading European
research groups in Europe on distributed systems

and Artificial Intelligence at the Universitat Politècnica
de Catalunya in Barcelona, Spain. He brings 10 years
of technical experience in Web Services, Semantic
Web, network technology, and the management of
large-scale international R&D teams to his work.

www.3scale.net

450 Townsend St.
San Francisco, CA 94107
+1 (415) 671-6432

66 The API Owner’s Manual: Best practices of successful API teams

https://twitter.com/ManfredBo
http://www.apimagazine.info/
https://twitter.com/njyx
http://www.3scale.net/

