
redhat.com

facebook.com/redhatinc
@redhatnews

linkedin.com/company/red-hat

INTRODUCTION

When any organization starts planning for cloud-native applications, it is important to consider

the entire time span: from selecting a development platform until an application is truly pro-

duction-grade and ready for delivery in the cloud. It can be a long journey, with many decisions

along the way that can help or hinder progress.

For example, at the beginning of a move to cloud-native development, it is easy for inefficiencies

to occur if developers begin selecting tools and frameworks before they know where the appli-

cation will be deployed. While enterprise developers want choice of runtimes, frameworks, and

languages, organizations need standards that address the entire application life cycle in order

to reduce operational costs, decrease risks, and meet compliance requirements. Organizations

also want to avoid lock-in, whether it is to a single provider of cloud infrastructure or the latest

architectural style.

In addition, given the steep learning curve in cloud development, considerations for building

robust, scalable, and resilient applications cannot be left until late in the development cycle.

A primary driver for moving to the cloud is elastic capacity for dynamic scaling, so resiliency

cannot be an afterthought.

For an effective cloud-native application strategy, the entire picture needs to be considered,

from development tools and cloud platform to deployment automation and operations. The

benefit of a holistic approach to cloud-native development is that it lends itself to a guided

path that eliminates unnecessary detours.

UNDERSTANDING CLOUD-NATIVE DEVELOPMENT

Cloud-native development is about responding to change with speed, resiliency, and agility.

This response is achieved through more frequent deployments that significantly reduce the

lead time to react to change.

Much of the discussion about cloud-native applications goes back to a manifesto called

“The Twelve-Factor App,” which is a set of principles gleaned from the experience of

building and operating Software-as-a-Service (SaaS) applications. The goals are:

• Reducing the developer learning curve.

• Building applications that are well suited for deployment on cloud platforms.

• Maximizing agility through continuous deployment.

• Enabling applications to scale up without requiring significant changes.

WHITEPAPER

EXECUTIVE GUIDE TO SELECTING
A CLOUD-NATIVE DEVELOPMENT
PLATFORM

http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
https://12factor.net/

2redhat.com WHITEPAPER Executive guide to selecting a cloud-native development platform

Through working with customers, Red Hat has found the following key elements for developing

applications that are cloud native:

• A services-based architecture. The style can be microservices or any modular, loosely coupled

architectural model. Services represent a business activity that is reasonably self-contained and

readily understood. The goal is to have services that can easily be updated or replaced. A well

defined service is easier to test more thoroughly than a complete application.

• Containers. Linux® containers, using Docker images, are a common packaging model and a self-

contained execution environment that provides portability as well as isolation. Containers enable

the advanced automation that makes cloud platforms appealing.

• DevOps automation. A set of collaborative processes and practices aimed at unifying develop-

ment and operations. The goals are to improve deployment frequency and deliver higher quality

releases, resulting in faster time to market, less risk, and better user satisfaction. Continuous inte-

gration/continuous delivery (CI/CD) are very closely tied to improvements resulting from DevOps.

Instrumentation and monitoring to understand performance, as well as ensure a quality end-user

experience, is another key goal.

• API-based communication. Interprocess communication only occurs through application

programming interfaces (APIs) using clean, contract-based interfaces over the network.

This eliminates unintended coupling that restricts change and is a common source of outages.

The importance of this becomes clearer in hybrid landscapes where applications no longer

reside in the same data center.

UNDERSTANDING MICROSERVICES

Microservices architecture is a compelling architectural style for solving many software develop-

ment challenges. Applications are broken into a loosely connected set of services that implement

specific business functions. The primary goal is more rapid innovation based on the idea that an indi-

vidual microservice is much easier to understand, improve, test, and deploy than a monolithic appli-

cation. As the purpose and function of each microservice should be well defined, automated testing

and continuous delivery become much more practical to implement.

http://redhat.com

3redhat.com WHITEPAPER Executive guide to selecting a cloud-native development platform

REQUIREMENTS FOR CLOUD-NATIVE APPLICATIONS

Cloud-native architecture places a number of technical requirements on applications. These include:

• Deployment needs to be automated. To speed release frequency, there is a need to incorporate

deployment automation so the process can occur by simply clicking a button for approval. An

automated build and deployment pipeline is required along with the ability to quickly roll back to a

previous release if necessary.

• Configuration information must be separate from the application. The configuration details

needed for an application to run within a particular environment should be stored in the deploy-

ment environment. This allows the same application image to be used in all environments includ-

ing development, testing, and production. Additionally, secure credential storage is needed as

applications will need to securely communicate with data sources and other components over

the network.

• Application services must be located dynamically. This is required for portability across

environments, high availability, and dynamic scaling where load balancing is used.

• Separate datastores are needed for persistent data. Processes and containers must be stateless.

Processes can crash and be restarted, possibly on different machines within a small number of

seconds. Data, session information, and logs must all be kept in external datastores.

Some considerations when beginning cloud-native development are:

• How much experience does your organization have with building and deploying containerized

applications to run on cloud platforms? Do developers understand what is required to manage

persistent data and configuration separately from applications?

• How long will it take to build a development environment to begin cloud-native development?

Will the development environment match the production cloud environment?

• How much time will it take to build and effectively integrate CI/CD into the development and

deployment processes?

All of these things must be considered when selecting a cloud-native development platform.

http://redhat.com

4redhat.com WHITEPAPER Executive guide to selecting a cloud-native development platform

MICROSERVICES CONSIDERATIONS

Microservices and cloud-native applications are closely related. In fact, microservices are difficult

to implement successfully without a cloud platform, containers, and DevOps automation. A primary

driver for microservices is the agility that is gained from using smaller application components that

can be released more frequently with lower risk. However, what was once a single application could

become a dozen microservices with independent release cycles. Here are some considerations when

moving to microservices:

• How long will it take to provision new development, test, and production environments for each

new microservice?

• Is there enough build and deployment automation to support the number of releases that

will be required?

• How will applications discover where microservices are running? Is there the flexibility to relocate

microservices as needed for availability or scalability?

• Can microservices be released without incurring downtime that will impact end users?

• How difficult will it be to diagnose problems? How difficult will it be to trace events across differ-

ent services and possibly hybrid environments?

• Will problems with one service be well contained or will those problems cascade into

multiple failures?

• Given the distributed nature of microservices, additional software infrastructure components

are required to perform functions such as service discovery, client-side load balancing, persistent

state management, distributed tracing, and resiliency.

• Will developers need to implement those services or will they find components off the internet?

• How much of a maintenance burden will there be if these components are now part of

every deployed microservice? How will the components get updated to address bugs and

security vulnerabilities?

• Are these commodity services that should be built into cloud runtimes or platforms?

http://redhat.com

5redhat.com WHITEPAPER Executive guide to selecting a cloud-native development platform

For developers to start building microservices, one of the first questions that comes up is what

sort of runtimes, frameworks, and languages are needed. Some considerations when answering this

question are:

• Do developers need to learn new frameworks to get started?

• Can the organization’s existing Java™ EE code and expertise be taken advantage of when moving

to microservices?

• Can new development styles, such as reactive programming, be used? Does the platform offer

choices needed to meet new demands, such as the event-driven workloads created by mobile and

the Internet of Things (IoT)?

• In order to use the best tool for the job, is it reasonable to have different microservices imple-

mented using different runtimes, frameworks, or languages? Will there be differences in the way

they are configured, deployed, or secured?

• How long will it take before new microservices can be tested in an actual public cloud environment?

Microservices are very appealing. However, microservices and distributed application architectures

can be difficult to master. It is important to select a platform that can abstract away complexity and

simplify development.

MODERNIZING EXISTING MONOLITHIC APPLICATIONS

While it might be attractive to developers, it’s not always practical or cost-effective to re-write exist-

ing monolithic applications into microservices. However, these applications still need to be main-

tained and have a backlog of improvements that need to be implemented. Reducing the backlog can

be difficult due to lengthy release cycles. Re-hosting these applications to a cloud platform can make

it easier to implement CI/CD, along with rolling releases, such as blue/green or canary deployments.

This allows developers to deliver more frequent releases with less risk. The cloud-hosted application

can become a “fast-moving monolith,” enabling developers to address the backlog of improvements.

Re-hosting an application in the cloud can also be an effective first step toward implementing

microservices. The flexibility of the cloud makes it easier to deploy new microservices in containers

alongside the existing application. Developers can then implement microservices that migrate func-

tionality out of the monolithic application.

Given the benefits of lifting and shifting existing applications to the cloud, here are some consider-

ations when choosing a cloud-native development platform:

• Does the development platform have options for modernizing existing applications as well as new

greenfield development?

• Can the cloud platform support applications that are not yet fully cloud native?

• What options exist for migrating existing Java EE applications?

• Does the development platform support speeding up the delivery of monolith style applications?

http://redhat.com

6redhat.com WHITEPAPER Executive guide to selecting a cloud-native development platform

Application servers can be a viable runtime environment for cloud-native applications, but the role

of the traditional application server changes when moving to a cloud native platform. Traditionally,

application servers provided a runtime and deployment environment, as well as management ser-

vices for a central domain running on a cluster of systems. However, many of the included opera-

tional tools, such as the administration console, are no longer necessary and are counterproductive.

Cloud platforms are appealing because they include automated management capabilities that

enable dynamic scaling and continuous delivery. Packaging a traditional application server with its

management components in a container can prevent developers from taking advantage of those

capabilities. Some things to consider:

• Does the platform include an option for a Java EE runtime that is integrated with the cloud plat-

form’s management capabilities?

• Are there tools to help migrate applications that are running on a legacy application server to a

modern, cloud-based Java EE environment?

• For applications that do not use all of the capabilities of Java EE, such as web applications, are

there alternatives that might be a better fit for the cloud?

With the right platform and tools, organizations can gain more value from existing applications while

also migrating to a cloud-native and microservices model.

SUPPORTING ON PREMISES AND MULTIPLE CLOUDS

Most IT organizations prefer not to be limited to a single provider of public cloud infrastructure.

Additionally, many organizations believe that even years from now, at least half of their applications

will still be running on-site. Since most organizations have these two requirements, some consider-

ations are:

• Will applications need to change in order to use cloud infrastructure from different providers?

What about deployment, operations, and monitoring? Will those be different on each

cloud platform?

• How can the differences between public cloud infrastructure and on-site systems be minimized?

Is the cloud platform used in public clouds also available to run on-site or on the organization’s

preferred Infrastructure-as-a-Service (IaaS)?

THE LARGER PICTURE

When evaluating a cloud-native development platform, it is also worth considering how the choice

will impact other areas:

• Are development tools available that work with the cloud development and deployment platform

out of the box? If not, how much time will developers spend trying to configure and integrate

their tools?

• Does the platform provide developers a prescriptive or guided approach to increase productivity?

• Are a suite of cloud-based middleware services for messaging, data storage, and business process

or rules management available, and ready to run on the cloud platform?

• Are pre-built third-party containers available to integrate with applications?

• Are training and consulting services available? Do the available in-house resources have experi-

ence with application modernization?

http://redhat.com

7redhat.com WHITEPAPER Executive guide to selecting a cloud-native development platform

THE IMPORTANCE OF SELECTING THE RIGHT CLOUD DEVELOPMENT PLATFORM

It is natural for developers who are starting with cloud development to solve one problem at a time

by following tutorials, and selecting software components from the Internet. First they need to learn

how to assemble enough of a runtime environment to build application code into a container. Then

they need to decide what other software components are necessary to build complete applications.

This process can be slow and have a number of drawbacks:

• The learning curve and the amount of integration required can result in a loss of developer pro-

ductivity that is difficult to explain to the business. Any new developers hired will need to learn

the stack that has been created in-house.

• Any selected software components will need to be maintained to ensure they are free of known

bugs and security vulnerabilities. For open source components, there is also the question of

whether they are appropriate for enterprise use.

• Many organizations report that developers can wind up writing code for functions like configura-

tion and deployment that do not provide any direct business value. Worse, many of these func-

tions are tied into the choice of a deployment platform and are commodity services that should

be part of the deployment platform.

Perhaps the largest problem with assembling a collection of components is that it does not lend

itself to opportunities that reduce the overall learning curve for development and operations. The

alternative is to select a cloud development platform that is designed to handle all phases, from

selecting a runtime to beginning development, all the way through to production deployment.

Moving to cloud-native applications is a process that does not occur overnight. For many organiza-

tions, it is a process that improves with experience. Given all that cloud-native development entails,

it is clear that an end-to-end approach, covering development to deployment, is more likely to

be successful. Red Hat offers such a platform with Red Hat® OpenShift Application Runtimes and

Red Hat OpenShift.

RED HAT OPENSHIFT APPLICATION RUNTIMES AND RED HAT OPENSHIFT

Red Hat OpenShift Application Runtimes is designed to simplify cloud-native application develop-

ment. A curated set of integrated runtimes and frameworks provide a guided path with a prescriptive

experience that can be used to jump-start development. A completely streamlined development and

deployment platform is possible because OpenShift Application Runtimes is based on, and optimized

for, Red Hat OpenShift, a container application platform that is designed for hybrid clouds.

Red Hat OpenShift provides a self-service platform for developers and operations to build and run

containerized applications. Through OpenShift, an environment for a new microservice or applica-

tion can be provisioned in minutes. Significantly reduced deployment cycles with much lower risk are

possible with OpenShift. Powerful, automated CI/CD build and deployment pipelines are available

with a few clicks. Together, Red Hat OpenShift Application Runtimes and Red Hat OpenShift, with

Red Hat development tools and Red Hat Consulting, can help organizations move to cloud-native

applications with less time and risk.

http://redhat.com

Copyright © 2018 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks of
Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S.
and other countries. Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
America, Inc. in the U.S. and other countries.

facebook.com/redhatinc
@redhatnews

linkedin.com/company/red-hat

NORTH AMERICA
1 888 REDHAT1

ABOUT RED HAT

Red Hat is the world’s leading provider of open source software solutions, using a community-
powered approach to provide reliable and high-performing cloud, Linux, middleware, storage, and
virtualization technologies. Red Hat also offers award-winning support, training, and consulting
services. As a connective hub in a global network of enterprises, partners, and open source
communities, Red Hat helps create relevant, innovative technologies that liberate resources for
growth and prepare customers for the future of IT.

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

redhat.com
F10657_V1_0118_KVM

The runtimes in OpenShift Application Runtimes are selected to give developers the right tool

for the job. For microservices development, developers have the choice of using Java EE to take

advantage of existing expertise, the newer Java microprofile standard that has evolved to meet

the needs of microservices, or an event-driven framework to build reactive microservices that

scale for high-concurrency, low-latency workloads. A Node.js runtime is provided for JavaScript

backend services that are frequently used with mobile and web applications. For migrating exist-

ing applications, a runtime based on Red Hat JBoss® Enterprise Application Platform, a Java

EE 7 certified application server based on a modern, modular, cloud-ready architecture, is pro-

vided. All of the runtimes are tested and verified by Red Hat.

To get developers started quickly, Launch, a free, cloud-based, SaaS tool running on Red Hat

OpenShift Online, is available through the Red Hat Developers website. After choosing a sample

application and a runtime, developers get a complete code base that is ready to build and run in

the cloud on OpenShift Online. As an educational tool, the same sample applications are avail-

able for all runtimes, which enables developers to easily compare the merits of the available

architectural styles.

To learn more see: https://www.redhat.com/en/technologies/cloud-computing/openshift/

application-runtimes

WHITEPAPER Executive guide to selecting a cloud-native development platform

http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://redhat.com
https://www.redhat.com/en/technologies/cloud-computing/openshift/application-runtimes
https://www.redhat.com/en/technologies/cloud-computing/openshift/application-runtimes

