
A HYBRID CLOUD
APPROACH TO BIG DATA
IN THE ENTERPRISE

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

A Hybrid Cloud Approach to Big Data in the Enterprise| 02

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

Innovate fast: deliver easy to
consume, on-demand and
self-service cloud capabilities

Deliver true hybrid and consistent
environment, leveraging off-prem
and on-prem capacity

Maximize existing IT investments,
significantly reduce IT operation
complexity

TABLE OF CONTENT

A Hybrid Cloud Approach to Big Data in the Enterprise| 03

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

Introduction 04

Use case overview 05

Deployment details 07

1. Deploying an RDS instance on Chorus 07

2. Deploying a Kubernetes cluster on Chorus 10

3. Deploying a standalone Spark cluster on Kubernetes 12

4. Running Spark applications as Kubernetes Jobs 14

Conclusions 16

Appendices 17

All IT managers understand the critical role
they play in ensuring that the enterprise
computing infrastructure under their control is
effective in meeting the business goals of the
organization. Indeed, staying competitive in
the rapidly evolving world of today requires
that businesses take a proactive mindset
towards leveraging their IT investments to
deliver key insights through big data
initiatives. The adoption of this mentality is
often reflected by the inclusion of dedicated
data science teams capable of driving these
projects. These groups apply advanced
analytical algorithms and artificial intelligence
to large datasets with a goal of deriving
competitive advantages for the organization.
The specific implementations vary and may
impact a variety of business processes such as
product development, marketing initiatives,
sales management, etc. However, as the
adoption of these practices continues to
increase, IT teams need to be prepared to
effectively support them.

While on the surface it may seem that big data
workloads are simply another application to
deploy and manage, in practice they entail
multiple challenges. First and foremost, big
data use cases typically require the integration
of multiple application and storage
components. These issues are often
exacerbated by the fact that data may be
located in a different location than where the
key insights need to be derived and stored.
Finally, data science teams often employ a
combination of frameworks and dataflows, so
there’s no “one size fits all” deployment
strategy. Fortunately, these challenges can be
effectively addressed through the adoption of
enabling technology solutions.

INTRODUCTION

A Hybrid Cloud Approach to Big Data in the Enterprise| 04

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

Over the past decade cloud computing has
quickly transitioned from a nascent
technology to the de facto standard for many
workloads found in modern enterprises. The
ability to quickly allocate and manage
resources in a self-service manner, reduce
costs through efficiency gains, and easily
manage fluctuations in capacity needs are just
some of the motivating reasons for this shift in
the market. Indeed, while early adoption
typically occurred in the context of public
cloud offerings such as Amazon Web Services
(AWS) [1], today there is a clear demand for
similar operating models within the on-
premises datacenter as well. Stratoscale[2] is
an example of a solution that allows IT
administrators to easily implement an AWS-
compatible region within their data center
using existing hardware assets. When
combined with a public cloud infrastructure,
the resulting hybrid cloud capabilities can
prove advantageous in supporting big data use
cases by allowing analysts to manage their
resources and data flows in a self-service
manner.

In this paper, we demonstrate the ability to
implement a big data use case in practice
using a hybrid cloud deployment strategy. We
provide an overview of our sample scenario,
followed by a detailed deployment walk
through that enables users to easily replicate
the scenario in their own environments. By
the end of this paper, readers should have a
clear understanding of how big data use cases
can be implemented using the underlying
technologies covered and how the adoption of
hybrid cloud computing environments enables
IT leaders to successfully meet the needs of
these initiatives within their organizations.

We consider a scenario where a data science
team needs to analyze a dataset that resides
within an object storage service on a public
cloud. For example, this is a common scenario
when an externally exposed service is
deployed on a public cloud and telemetry data
is stored for future analysis. It is common in
these cases for the subsequent analysis to
happen on-premises where the data
processing algorithms can integrate with high-
value business databases that reside within
the enterprise data center.

In our scenario, we make use of a specific set
of technologies which are representative of
those that are typically adopted as part of big
data and cloud computing deployment
paradigms. The technologies are summarized

USE CASE OVERVIEW

A Hybrid Cloud Approach to Big Data in the Enterprise| 05

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

in Table 1 along with their location, where we
use AWS and a Stratoscale cluster for public
and private cloud environments respectively.
S3 is a common choice for unstructured data
due to its simple model, low cost, and
scalability. We select MySQL as our structured
database to store results from analytics
applications. Finally, we use Spark [3] as the
underlying data processing framework, where
we deploy the Spark cluster using Kubernetes
[4]. Spark is a common selection by data
science teams due to its flexible programming
model as well as support for multiple
languages including Python, Java and Scala.
Kubernetes allows users to easily deploy
containerized application code and is a natural
fit for managing and scaling Spark clusters.

Logical component Technology Location

Object storage S3 storage Public cloud

Structured storage MySQL database Private cloud

Orchestration Kubernetes Private cloud

Data processing Spark Private cloud

TABLE 1:
TECHNOLOGIES INCORPORATED INTO THE BIG DATA USE CASE

Figure 1 illustrates the overall dataflow achieved through the integration of these technologies
across the cloud environments. The data stored on AWS S3 is accessed via a Spark application
executed via an on-premises Spark cluster. The Spark cluster itself is deployed through a Kubernetes
cluster managed by Stratoscale. Upon completion of its analysis, the Spark application stores its
result to a MySQL database within the same environment.

A Hybrid Cloud Approach to Big Data in the Enterprise| 06

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

FIGURE 1:
DATAFLOW ACROSS PUBLIC AND PRIVATE CLOUD ENVIRONMENTS

S3 storage

As a specific instantiation of the scenario
depicted in Figure 1, our deployment
implementation is composed of the following
on-premises resources:

• A MySQL instance

• A three node Kubernetes cluster

• A Spark cluster comprised of a single
master and two worker instances

We also assume the existence of:

• An S3 bucket on AWS

• A utility host / VM which is able to access
on-premise resources

This section outlines the specific steps taken
to implement this deployment and execute a
sample Spark application to validate the
system end-to-end.

1. DEPLOYING AN RDS INSTANCE
ON STRATOSCALE CHORUS

A MySQL database instance can be
instantiated using the AWS-compatible
relational database service (RDS) within
Stratoscale Chorus. As illustrated in Figure 2,
the database menu item can be found under
Cloud Services on the Symphony menu, where
users can select Instances to open the list of
current resources as well as create new
databases.

DEPLOYMENT DETAILS

A Hybrid Cloud Approach to Big Data in the Enterprise| 07

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

The following screenshots illustrate the
subsequent steps for configuring and
deploying a MySQL instance using the
Stratoscale Symphony UI:

Step 1: Select “Create RDS Instance”

Figure 2: Selecting RDS instance menu option

Step 2: Populate instance name and select
engine version, instance type, data volume
and storage pool (here we use MySQL 5.6)

A Hybrid Cloud Approach to Big Data in the Enterprise| 08

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

Step 3: Select a network

Step 4: Configure database name and user

Once the instance has been launched, the status can be viewed in the dashboard as shown in Figure
3. Once the database state is “Active”, more details regarding the configuration can be obtained by
clicking on the name link. The resulting view as shown in Figure 4 provides the IP address where the
database can be reached.

A Hybrid Cloud Approach to Big Data in the Enterprise| 09

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

As a final confirmation step, the database
instance can be connected to and configured
using the MySQL command line utility. Figure
5 displays a basic data table definition for our
sample Spark application to store results in
the test database setup as part of the RDS
deployment.

Figure 3: Overview of RDS instances and state

Figure 4: RDS instance detailed view

Figure 5: Accessing and configuring MySQL
tables via command line

2. DEPLOYING A KUBERNETES
CLUSTER ON SYMPHONY

Similar to RDS, Stratoscale Symphony
simplifies the deployment of Kubernetes
clusters using a native container service.
Figure 6 highlights the corresponding menu
item which, again, can be found under
“Compute Services”.

A Hybrid Cloud Approach to Big Data in the Enterprise| 10

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

Figure 6:
Selecting Containers
service

The following screenshots illustrate the
subsequent steps for configuring and
deploying a Kubernetes cluster using the
Stratoscale Symphony UI:

Step 1: Select “Create Cluster”

Step 2: Specify a cluster name, network, and
storage pool

Step 3: Specify the cluster size and resource
requirements

Once the cluster has been launched, the status is updated live in the dashboard as nodes are
allocated, provisioned, and configured to form a Kubernetes cluster. Once the state is “Running” as
shown in Figure 7, additional details regarding the configuration can be obtained by clicking on the
name link. The corresponding view as shown in Figure 8 provides the IP address for the cluster as
well as a convenient link to open the native Kubernetes UI dashboard as shown in Figure 9.

A Hybrid Cloud Approach to Big Data in the Enterprise| 11

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

Figure 7: Overview of Kubernetes clusters and status

Figure 8: Kubernetes cluster detailed view
and link to open native dashboard

Figure 9: Kubernetes native dashboard

The Kubernetes command line tool KubeCTL can be installed [5] on the utility host and configured to
point at the deployed cluster using the following commands:

kubectl config set-cluster bigdata --server=http://<CLUSTER_IP>:8080

kubectl config set-context default-context --cluster=bigdata

kubectl config use-context default-context

3. DEPLOYING A STANDALONE
SPARK CLUSTER ON KUBERNETES

In our example, we deploy Spark 2.1.1 using
the standalone deployment model supported
by Spark [6]. In order to deploy Spark via
Kubernetes, we define a Docker image as
outlined in Appendix A.1. The image
incorporates precompiled binaries for Spark as
well as dependencies for AWS connectors. Our
sample analyzer application is written in
Python, and we therefore also include
dependencies to support PySpark.

The Spark deployment on Kubernetes consists
of the following components:

• A Spark master deployment (outlined in
spark-master-deployment.yaml in Appendix
A.2)

• A service definition so workers can reach
the master (outlined in spark-master-
service.yaml in Appendix A.2)

• A Spark worker deployment (outlined in
spark-worker-deployment.yaml in Appendix
A.2)

The components can be deployed using the
following commands:

A Hybrid Cloud Approach to Big Data in the Enterprise| 12

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

kubectl create -f spark-master-

deployment.yaml

kubectl create -f spark-master-

service.yaml

kubectl create -f spark-worker-

deployment.yaml

The status of deployments and services can be
confirmed using either kubectl or the
Kubernetes UI as shown in Figures 10 and 11.
In addition, the Spark master logs can be
inspected to confirm that it is running
successfully and receives connections from
the workers as highlighted in Figure 12. At this
point a functional Spark environment is
available to execute data processing
applications.

Figure 10: Kubernetes Spark master
and slave deployments view

Figure 11: Kubernetes Spark master service view

A Hybrid Cloud Approach to Big Data in the Enterprise| 13

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

Figure 12: Spark master logs confirming
launch and connection with workers

A Hybrid Cloud Approach to Big Data in the Enterprise| 14

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

4. DEPLOYING A STANDALONE SPARK CLUSTER ON KUBERNETES

As an illustrative example, we define a simple Spark application that reads all text files from an S3
bucket and stores the number of total words to a MySQL table. The following code outlines this
functionality as a PySpark application.

spark-analyzer.py

from pyspark.sql import SparkSession

import MySQLdb

import os

SPARK_APP_NAME = "Spark analyzer"

DATABASE_HOST = os.environ.get('DATABASE_HOST')

DATABASE_USER = os.environ.get('DATABASE_USER')

DATABASE_PASSWORD = os.environ.get('DATABASE_PASSWORD')

DATABASE = 'test'

def store_result(val):

"""Store value to data table"""

db = MySQLdb.connect(

host=DATABASE_HOST,

user=DATABASE_USER,

passwd=DATABASE_PASSWORD,

db=DATABASE

)

cursor = db.cursor()

sql = "insert into data (value) VALUES(%s)" % (val)

cursor.execute(sql)

db.commit()

db.close()

def main():

"""Main application method"""

Configure SparkSession

spark = SparkSession \

.builder \

.appName(SPARK_APP_NAME) \

.getOrCreate()

s3Rdd = spark.sparkContext.textFile("s3a://<BUCKET_NAME>/*")

answer = s3Rdd.flatMap(lambda line: line.split(" ")).count()

store_result(answer)

if __name__ == "__main__":

main()

A Hybrid Cloud Approach to Big Data in the Enterprise| 15

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

We execute this Spark application by defining
it as a Kubernetes batch job so that the Spark
driver can access the cluster and also to
streamline the overall flow. The corresponding
job configuration definition is outlined in
Appendix A.3.

While some configuration values are hard-
coded in this sample code, the application
does expect certain information, including
database details and AWS credentials for
accessing S3, to be passed as environmental
variables. These are defined as part of the job
configuration which, in turn, makes use of
Kubernetes support for secrets to securely
store and pass credential data within the
cluster. Representative secret configuration
files can be found in Appendix A.4. The secret
configuration and job execution can be
invoked using the following commands:

kubectl create -f aws-secrets.yaml

kubectl create -f db-secrets.yaml

kubectl create -f spark-job-

analyzer.yaml

The job status can be tracked in the
Kubernetes dashboard as shown in Figure 13.
The logs can also be inspected via UI or
kubectl as needed. In our case, the successful
run of the job results in the insertion of a
value in our database as depicted in Figure 14.

Figure 13: Kubernetes view showing
execution of Spark job

Figure 14: Database query
confirming successful
execution of Spark
application

With the increasing emphasis on deriving
business value from accumulated datasets,
the demand to support big data initiatives in
the enterprise is on a trajectory to grow
rapidly over the coming years. The ability of an
IT team to address the corresponding
requirements of data science teams within the
organization will be critical in serving this
demand effectively. As demonstrated in this
paper, the incorporation of key technologies
can be a tremendous asset for IT managers by
allowing them to enable developers and users
to implement their use cases in a self-service
manner while adhering to operational
concerns and policies. Specifically, we’ve
outlined how:

A hybrid cloud implementation comprised of
AWS public cloud and AWS-compatible on-
premises environments allows developers to

CONCLUSIONS

A Hybrid Cloud Approach to Big Data in the Enterprise| 16

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

easily access and deploy resources as needed
with tools they’re already familiar with.

The use of resource managers such as
Kubernetes allow data scientists to configure
and execute analytics code written in their
processing framework of choice in a
composable manner.

Enabling dataflows that span public and
private clouds can be an effective way to
implement analytics while maintaining the
data security needs of the organization.

These approaches demonstrate the benefits
that proactive IT leaders can deliver while
supporting big data projects, and thereby
expand the role of IT as a strategic asset to
their organizations.

REFERENCES
[1] aws.amazon.com

[2] www.stratoscale.com

[3] spark.apache.org

[4] kubernetes.io

[5] kubernetes.io/docs/tasks/tools/install-kubectl

[6] spark.apache.org/docs/latest/spark-
standalone.html

APPENDICES
1. SPARK CONTAINER IMAGE DOCKERFILE

A Hybrid Cloud Approach to Big Data in the Enterprise| 17

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

FROM ubuntu:16.04

Install base dependencies

RUN apt-get update && apt-get install -y \

openjdk-8-jre-headless \

curl \

python-minimal \

python-setuptools \

python-dev \

build-essential \

libmysqlclient-dev

RUN easy_install pip

RUN pip install MySQL-python

Get Spark from US Apache mirror

RUN mkdir -p /opt && \

cd /opt && \

curl http://www.us.apache.org/dist/spark/spark-2.1.1/spark-2.1.1-bin-

hadoop2.7.tgz | \

tar -zx && \

ln -s spark-2.1.1-bin-hadoop2.7 spark

Download dependencies for AWS

RUN cd /opt/spark/jars && \

curl -O http://central.maven.org/maven2/com/amazonaws/aws-java-

sdk/1.7.4/aws-java-sdk-1.7.4.jar && \

curl -O http://central.maven.org/maven2/org/apache/hadoop/hadoop-

aws/2.7.3/hadoop-aws-2.7.3.jar

ENV PATH $PATH:/opt/spark/bin

2. SPARK DEPLOYMENT CONFIGURATION FILES

spark-analyzer.py

A Hybrid Cloud Approach to Big Data in the Enterprise| 18

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: spark-master-deployment

spec:

replicas: 1

selector:

matchLabels:

component: spark-master

template:

metadata:

labels:

component: spark-master

spec:

containers:

- name: spark-master

image: #INSERT IMAGE LOCATION

command: ["/opt/spark/sbin/start-master.sh"]

env:

- name: SPARK_NO_DAEMONIZE

ports:

- containerPort: 7077

- containerPort: 8080

resources:

requests:

cpu: 100m

spark-analyzer.py

kind: Service

apiVersion: v1

metadata:

name: spark-master

spec:

ports:

- port: 7077

targetPort: 7077

name: spark

- port: 8080

targetPort: 8080

name: http

selector:

component: spark-master

spark-worker-deployment.yaml

A Hybrid Cloud Approach to Big Data in the Enterprise| 19

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: spark-worker-deployment

spec:

replicas: 2

selector:

matchLabels:

component: spark-worker

template:

metadata:

labels:

component: spark-worker

spec:

containers:

- name: spark-worker

image: #INSERT IMAGE LOCATION

command: ["/opt/spark/sbin/start-slave.sh"]

args: ["spark://spark-master:7077"]

env:

- name: SPARK_NO_DAEMONIZE

ports:

- containerPort: 8081

resources:

requests:

cpu: 100m

3. SPARK APPLICATION JOB CONFIGURATION FILE

A Hybrid Cloud Approach to Big Data in the Enterprise| 20

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

apiVersion: batch/v1

kind: Job

metadata:

name: spark-analyzer

spec:

template:

metadata:

name: spark-analyzer

spec:

containers:

- name: spark-analyzer

image: #INSERT IMAGE LOCATION

command: ["/opt/spark/bin/spark-submit"]

args: [

"--master",

"spark://spark-master:7077",

"/opt/app/spark-analyzer.py"

]

env:

- name: AWS_ACCESS_KEY_ID

valueFrom:

secretKeyRef:

name: aws-credentials

key: awsAccessKeyID

- name: AWS_SECRET_ACCESS_KEY

valueFrom:

secretKeyRef:

name: aws-credentials

key: awsSecretAccessKey

- name: DATABASE_USER

valueFrom:

secretKeyRef:

name: db-credentials

key: username

- name: DATABASE_PASSWORD

valueFrom:

secretKeyRef:

name: db-credentials

key: password

- name: DATABASE_HOST

value: #INSERT SQL hostname / IP

restartPolicy: Never

4. SECRET CONFIGURATION FILES

aws-secrets.yaml

A Hybrid Cloud Approach to Big Data in the Enterprise| 21

www.stratoscale.com
US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

apiVersion: v1

kind: Secret

metadata:

name: aws-credentials

type: Opaque

data:

awsAccessKeyID: #base64 encoded value

awsSecretAccessKey: #base64 encoded value

db-secrets.yaml

apiVersion: v1

kind: Secret

metadata:

name: db-credentials

type: Opaque

data:

username: #base64 encoded value

password: #base64 encoded value

About Stratoscale
Stratoscale delivers robust cloud building blocks to
modernize and future-proof the enterprise on-prem
environment, aligning it with the public cloud.
Stratoscale's comprehensive software solution, enables
enterprises to run and scale applications anywhere by
transforming the data center into an agile, flexible and
scalable environment. Driven by innovation and advanced
cloud practices, Stratoscale provides development teams
and IT the building blocks, managed services and tools to
automate and simplify the entire life-cycle, ensure fast
time-to-market and meet evolving business needs.
Stratoscale raised over $70M from leading investors
including: Battery Ventures, Bessemer Venture Partners,
Cisco, Intel, Qualcomm Ventures, SanDisk and Leslie
Ventures.

For more information visit:

http://www.stratoscale.com
+1 877 420-3244 | sales@stratoscale.com

AWS (Amazon Web Services) is a trademark of Amazon.com, Inc.

Support Modern
Applications with

Cloud-Native Services

https://www.stratoscale.com/thank-you-5-minutes-demo/?utm_source=survey&utm_medium=asset&utm_campaign=hybrid_cloud_survey
https://www.stratoscale.com/thank-you-5-minutes-demo/?utm_source=survey&utm_medium=asset&utm_campaign=hybrid_cloud_survey

