
Whitepaper

1

Data masking What you really need to know before you begin

Database DevOps
6 tips for achieving continuous
delivery

WHITEPAPER

Whitepaper

2

Database DevOps 6 tips for achieving continuous delivery

Contents

Why continuous delivery?

Tip 1: Version control doesn’t stop at the application

3

4

Tip 2: If you’re in a team, branching helps develop further, faster5

Tip 3: Writing tests takes time – but saves more time

Tip 4: NuGet packages make life a lot easier

6

7

Tip 5: Automate, automate, automate8

Tip 6: Start small and others will follow9

Further resources9

“Continuous delivery is the ability
to get changes of all types –

including new features, configuration
changes, bug fixes and experiments –

into production, or into the hands
of users, safely and quickly in a

sustainable way.”
Jez Humble, co-author, ‘Continuous Delivery’

Whitepaper Database DevOps 6 tips for achieving continuous delivery

3

Why continuous delivery?

Continuous delivery has changed the rules of the game. It’s not just about moving
from big bang releases to smaller, faster, more frequent releases. It’s about putting
in place a process so that reliable software can be deployed without problems, at
any time.

One of the biggest advantages is in automating the repetitive development and
testing processes that development teams use to deliver, manage, and maintain
applications and databases. From version controlling changes to deploying them
to different environments, and, when ready, choosing to deploy to production, con-
tinuous delivery helps teams reduce risk and increase both efficiency and reliabili-
ty in the software release process.

More and more companies are adopting it and if you’re having problems introduc-
ing it, don’t worry: that’s normal. Fortunately, you’re coming to it at the point when
all of the hurdles have been faced – and overcome – before.

Importantly, the biggest roadblock to continuous delivery isn’t the hardware or
software you require, it’s the development practices and strategies that need to
change to accommodate it.

Those practices, remember, also include database development. Redgate’s 2018
State of Database DevOps Survey revealed that 76% of developers are responsible
for both database and application development, and 35% of teams deploy data-
base changes either daily or more than once a week.

Tellingly, it also showed that the greatest drawbacks of traditional siloed database
development are the increased risk of failed deployments, slower development
and release cycles, and an inability to respond quickly to changing business re-
quirements.

So not including database development in continuous delivery can hinder and
even prevent companies and organizations gaining the advantages it promises.
With that in mind, the following pages give six pointers for starting or enhancing
your continuous delivery journey.

https://www.red-gate.com/solutions/database-devops/report-2018
https://www.red-gate.com/solutions/database-devops/report-2018

Whitepaper Database DevOps 6 tips for achieving continuous delivery

4

Tip 1: Version control doesn’t
stop at the application

• Databases
The code behind database schemas is just that: code. There are tools out
there that can version control schemas and reference data, and plug into
and integrate with the same systems used for applications. They can also
maintain the referential integrity of your database, let you roll back any
changes you don’t want, and avoid losing data during deployments.

• Configuration
It also makes sense to version control elements such as server
configuration properties, network configuration scripts, database server
settings and scripts to define database users and roles, and their
permissions.

• Other content
Add related content like EULA documentation, website images and
deployment scripts, and version control becomes the one source of truth for
everything connected to your application.

Version controlling application code is becoming standard practice, and Redgate’s
2018 State of Database DevOps Survey revealed 81% of companies and organiza-
tions already use it. The single source of truth it provides results in an auditable
trail of who made what changes and when, encourages collaboration, and means
a common version exists to revert back to if there’s a problem.

For continuous delivery to work effectively, however, version control needs to go
beyond the application and encompass every element in the development pro-
cess:

https://www.red-gate.com/solutions/database-devops/report-2018

Whitepaper Database DevOps 6 tips for achieving continuous delivery

5

Tip 2: If you’re in a team,
branching helps develop
further, faster

Collaboration is also key. If everyone in the team knows what everyone else is
working on, and roughly when they plan to release, conflicts will be avoided later.

“High performers have the shortest integration times and branch lifetimes,
with branch life and integration typically lasting hours. Low performers have
the longest integration times and branch lifetimes, with branch life and
integration typically lasting days.”

By its very nature, continuous delivery speeds up software development. This, in
turn, encourages development teams to start working on several projects at the
same time. While there are bug fixes and quick wins going on over here, new fea-
tures can be developed over there.

All of which means branching. It can be regarded as a pain, but it’s advisable if you
want to practise true continuous delivery and be able to release at any time, all of
the time.

There is a caveat, however, because as Jez Humble points out on his
Continuous Delivery blog, The more work you do on your branch, the more likely it
is you will break the system when you merge into mainline. The key is to have one
main branch that is always releasable, and merge little and often from the other
development branches.

This is supported by the 2017 State of DevOps Report from Puppet and DORA
which, while strongly advocating branching, comments:

https://continuousdelivery.com/2011/07/on-dvcs-continuous-integration-and-feature-branches/
https://puppet.com/resources/whitepaper/state-of-devops-report

Whitepaper Database DevOps 6 tips for achieving continuous delivery

6

Tip 3: Writing tests takes time
– but saves more time

It may seem like a paradox, but the time and effort spent writing tests is repaid
several times over. Deployment errors reduce, as does the requirement for bug
fixes. Users are happier and more engaged. Code becomes robust and maintaina-
ble, which further decreases potential issues in the future.

While writing tests quickly and with good coverage can be hard work, automating
them in a continuous integration process brings many advantages. As soon as
changes are committed to version control, they trigger a build which tests them
and provides instant feedback if the build fails. Errors are caught sooner, earlier in
the pipeline, and can be fixed while the code is still fresh in the developer’s mind.

It works too, and is specifically called out as a key aspect of continuous delivery in
the previously mentioned 2017 State of DevOps Report:

The key to writing good tests is to start with the most critical parts of the applica-
tion, and then move to the less critical parts. And don’t worry whether it’s a unit
test or an integration test. The lines can sometimes blur and the important thing is
to have good coverage and tests that don’t take an age to run.

“We found that the following all positively affect continuous delivery:
comprehensive use of version control; continuous integration and
trunk-based development; integrating security into software delivery
work; and the use of test and deployment automation. Of these, test
automation is the biggest contributor.”

Whitepaper Database DevOps 6 tips for achieving continuous delivery

7

Tip 4: NuGet packages make
life a lot easier

NuGet packages are on the rise. Not just because of the number that are available
(over 100,000 unique packages, with over 6.5 billion downloads and counting), but
because the NuGet extension for Visual Studio is a free and powerful package
manager that makes using those packages simple.

Rather than downloading, integrating and configuring an open source component
into your project, NuGet takes care of it for you, as well as updating the config file
if required, and providing the option to update components and remove them if
required.

Because NuGet packages are integrated into Visual Studio, it’s easy to add or
update them in your project. You also don’t have to commit the binaries because
NuGet can download packages using just the name and version number.

That’s one side of the coin. The flipside is that you can you create your own librar-
ies as NuGet packages and publish them to private package repositories. This will
improve build times because you’re depending on binaries rather than source, and
help separate concerns and reduce variability.

Whitepaper Database DevOps 6 tips for achieving continuous delivery

8

Tip 5: Automate, automate,
automate

Not everything can be automated, but where it can be, it makes sense because it
smooths the development process and highlights errors at earlier stage.

As can be seen in the diagram below, the key to introducing automation is version
control, which makes continuous integration possible. Once in place, every time a
change is committed to version control, it triggers an automatic build process that
tests the change and flags up any errors in the code.

It also opens the door to automating further stages in the development process
for both the application and the database, turning it into a reliable, repeatable
workflow. Key considerations are:

• Automate build and test runs
There are many continuous integration systems such as TeamCity and
Jenkins that will produce an artifact ready for release.

• Running a build isn’t just for applications
Anything that needs to be consumed somewhere else should be built, so
include libraries and databases too, preferably using tools that plug into the
same infrastructure.

• Automate releases and deployments
Writing scripts and running them from your build system is fine for simple
projects, but in most cases a release management system like Octopus
Deploy will be a much better fit for your environments, team and processes.
Once again, database deployments can be integrated into the same system.

Whitepaper Database DevOps 6 tips for achieving continuous delivery

9

Tip 6: Start small and others
will follow

In a perfect world, you could start following all of the tips immediately. But you’re
already busy, you’ll have projects on the go, and getting buy-in from management
is sometimes hard.

So the final tip is to identify just one improvement to your process that you’d like
to try, and tell others about it. Work on something small, prove that it helps, and
you’ll convince others to follow.

Further resources
However far along you are on your journey to continuous delivery, you may also
find the following resources useful.

• The 2018 State of Database DevOps
The latest annual survey of SQL Server database professionals reveals how
many are introducing the various stages of continuous delivery, how it’s
changed over the last 12 months, and what the key challenges are.

• Continuous Delivery – how do application and database development
really compare?
A summary of the 2018 State of Database DevOps Survey, looking into how
– and why – the adoption rates of version control, continuous integration,
automated testing, and automated deployments vary between applications
and databases.

• Bringing DevOps to the database. Part 1 and Part 2
Two articles that introduce the stages of continuous delivery that enable da-
tabase DevOps. Part 1 covers version control, and Part 2 demonstrates how
this can be followed by continuous integration and release management.

https://www.red-gate.com/solutions/database-devops/report-2018
https://www.red-gate.com/blog/database-devops/continuous-delivery-and-the-database
https://www.red-gate.com/blog/database-devops/continuous-delivery-and-the-database
https://www.red-gate.com/blog/database-devops/bringing-devops-database-part-1-version-control
https://www.red-gate.com/blog/database-devops/bringing-devops-to-the-database-part-2-continuous-delivery

