
ABSTRACT

Many organizations are now using active-active replication to
ensure high availability. In this white paper, we’ll reveal how
you can easily and successfully implement this strategy across
your enterprise.

INTRODUCTION

As data becomes more and more critical, its availability should
not be compromised by any type of outage – whether it’s
unscheduled due to a system crash or malfunction, or it’s
scheduled due to patches or upgrades to Oracle, the OS, or
applications, and storage replacement. Because today, people
view scheduled outages differently than 10 years ago. They
don’t really care if the outage is scheduled or unscheduled; an
outage is an outage. With this in mind, all types of organizations
are looking for more uptime: many are striving for five 9s, or only
about 6 minutes of unscheduled downtime a year. This is, of
course, very difficult to achieve.

Replication technology like SharePlex® for Oracle, a lower-cost
alternative to Oracle GoldenGate, can help.

With replication, organizations can extend the database and
server to minimize outages. One replication method, active-
active replication (also known as peer-to-peer, master-to-master,
active-active, or multi-active server replication), offers the most
promise. Active-active replication is a horizontal scaling of the
application over multiple servers that allows propagation of
changes to more than one server. If everything is done properly,
end users will not see any outages from the application.

This white paper discusses the key considerations to keep in mind
when using active-active replication to ensure high availability.

Active-Active Replication
Considerations for high availability

2

CONSIDERATIONS FOR
HIGH AVAILABILITY IN
ACTIVE-ACTIVE REPLICATION

To ensure your application can be set
up for horizontal scale with active-active
replication, consider the following:

•	 Unique key collisions

•	 Triggers

•	 Update jobs

•	 Application deployment (DDL)

•	 Network connectivity

•	 Conflict resolution

•	 Conflict avoidance

Unique key collisions

As you extend your application
horizontally, you need to consider how
to handle unique key collisions. Unique
keys are usually generated by an Oracle
sequence. Since the application is now
split over multiple servers, a single
sequence with the same value cannot be
used, since each one could potentially
generate the same key value.

Methods for creating unique keys

Here are two methods for creating
different unique keys:

•	 Use a range for each server system.
For example, you could assign the
following ranges:
Server 1 – Range from 1-999,999,999
Server 2 – Range from 1,000,000,000-
1,999,999,999
Server 3 – Range from 2,000,000,000-
2,999,999,999 Etc.

•	 Use a distinct set of values for each
server system. For example, if you have
two servers, you might have one use odd
numbers and the other use even numbers,
as follows:
Server 1 – Use a sequence that generates
odd numbers:
CREATE SEQUENCE supplier_seq
MINVALUE 1 START WITH 1 INCREMENT
BY 2 CACHE 20;

Server 2 – Use a sequence that
generates even numbers:
CREATE SEQUENCE supplier_seq
MINVALUE 1 START WITH 2 INCREMENT
BY 2 CACHE 20;

If you have more than two nodes, follow a
similar convention. However, be sure to:

•	 Assign a node number for each server in
your active-active setup.

•	 Consider the max number of nodes you
will have in the active-active setup.

•	 When creating the sequence, use the
following template:
CREATE SEQUENCE sequence_name
MINVALUE 1 START WITH node_number
INCREMENT BY n CACHE 20;
Where:
node_number is the assigned node
number in the active-active setup.
n is the number of maximum nodes in the
active-active setup.

Recovering the database and resetting
the sequence

As you select a method to handle
uniqueness collision, keep in mind how
to recover the database and reset the
sequence to its rightful values.

•	 With method 1, to recreate the sequence,
scan the unique key for largest value in the
range. For example:

“max (col) where col > min_range and 	
col < max_range”

•	 With method 2, find the largest value
and depending on the node number, you
will need to set the next available value.
For example:

“(Trunc ((max (col) + n) / n)) + node_number”
Where:
n is the number of nodes in replication.
node_number is the assigned node number.
The same formula can be used on any node.

Triggers

Row-level triggers

A row-level trigger that modifies data
in replication should be prepped with a

“WHEN” clause. When using SharePlex
for Oracle, this is needed because
when SharePlex applies the data on
the target, it will not trigger the change.
For any existing trigger, there is a script
that will prep all triggers with the WHEN
clause. For any new trigger, application
deployment must ensure that the “WHEN”
clause exists. SharePlex for Oracle
provides a script to modify all triggers to
add a “WHEN” clause to the trigger. The
script is provided with the software called
sp_add_trigger.sql.

Understanding seven
key considerations
will help you prevent
outages and achieve
your replication goals.

3

Statement-level triggers

There is no good method to isolate the
change from a particular user. Statement-
level triggers that change replicated data
must be avoided.

Update jobs

Consider where to run update jobs, since
running jobs on multiple servers can
cause collision. Make sure your failover
process handles enabling and disabling of
jobs; otherwise, conflicts may occur.

Application deployment (DDL)

In a downtime scenario, application and
DDL changes are made at the same time
on one system.

•	 A column is added, and then the
application is updated to use the column.

•	 When a column is removed, first stop
updates to the database, drop the column,
and then update the application.

In a no-downtime, active-active scenario,
you can use SharePlex to propagate
the changes. SharePlex lets you choose
either to replicate DDLs or to control
the DDL yourself. Full control can be
obtained without downtime; however, the
deployment of changes has to be split
into two phases and the steps depend on
whether the transaction is an add or delete:

•	 When using a DDL to add a column or
table, do not add data (the application
should not utilize the new column). This is
to avoid replication of the new column data
to the target server(s) because the column
does not yet exist on the target server.
The second phase is when all servers are
updated with the new column, allowing the
application to use the new column.

•	 When using a DDL to drop a column
or table, the first phase is to modify the
application to not use the column and
then update all systems to use the same
application version. The second phase is to
drop the column on each server.

Network connectivity

Application routing should be in place
for both normal and outage situations.
Connections from customer requests
should have some routing factor, such as
geographic or IP persistence. A secondary
mechanism should also be in place in
case of outages. When you use multiple
servers, the application needs to know

that it must connect to a different box
when there is an outage on one server.

SharePlex will utilize the network
connections to send data between
the servers. Network bandwidth
considerations for replication should be
determined. In addition, network isolation
and routing for SharePlex activities
must be considered as well. If network
bandwidth is not taken into consideration,
a backlog could occur.

Conflict resolution

In data replication, conflicts can occur
on three types of operations: INSERT,
UPDATE and DELETE.

•	 INSERT – With active-active replication,
collisions on an INSERT operation should
not occur if the database design is
correct; that is, it considers UNIQUE key
violations. In most cases, UNIQUE keys
are generated by a SEQUENCE statement.
There are mechanisms for handling
sequence generation in a peer-to-peer
environment to ensure uniqueness.

•	 DELETE – Collisions on a DELETE
operation will be ignored since the DELETE
operation is the end cycle for the data.

•	 UPDATE – The only conflict that has
proven to be problematic occurs with
the UPDATE operation. Here are some
methods that organizations are using to
resolve UPDATE conflicts:

Timestamp resolution – The update that
occurred last should be the one that
wins. This means that the server ignores
UPDATES with an older timestamp than
the last UPDATE for the same row. If the
timestamp on the UPDATE is newer than
the last one applied to that row then the
record will be applied.

Host resolution – In an active-active
environment, you can dictate the priority
of operations based upon where the
data is originated. In this scenario, the
data from a lower-priority host will be
ignored if there is a conflict. If the data
came from a server with higher priority,
it will be applied.

Business logic resolution – A record’s
fate depends on the business logic
applied. Since everyone’s business logic
is different, the mechanism for resolving
conflict in this scenario should be
provided by the organization’s own code.

SharePlex for Oracle has built-in conflict-
resolution procedures for timestamp
resolution and host resolution. It also

Application routing
should be in place
for both normal and
outage situations.

4

provides the ability to write business
logic conflict resolution procedures
using PL/SQL. With the power of PL/SQL,
organizations can apply any business logic
to resolve the data. Remember that the
goal is to resolve the conflict as well as to
bring the data back in sync on all nodes.

Conflict avoidance

Avoiding conflicts is cheaper than
resolving them, of course; in fact, if
you can avoid conflicts, the integrity of
the data is preserved without any cost.
Sometimes, conflict resolution on the
target cannot be done automatically due
to the complexity of the logic. In this case,
avoiding conflicts is the best scenario.

Here are some methods for 	
avoiding conflicts:

•	 In web-based applications, you can
persist one connection throughout the
transaction. This will isolate changes
from one customer to one server,
reducing conflicts.

•	 In some applications, the isolation can be
done by the login: you can isolate a user’s
changes to a certain machine, avoiding
conflict altogether.

Avoidance mechanisms cannot always
prevent all conflicts, but they can reduce
the conflicts to a small, manageable
number. By using conflict avoidance, you
may narrow down your actual conflicts
to a handful of tables; then conflict-
resolution procedures need to be
applied to only those tables.

Conclusion

Organizations strive to minimize outages,
with goals as stringent as just six minutes
of unscheduled downtime a year. Active-
active replication scales the application
over multiple servers to eliminate ALL
outages—scheduled and unscheduled—
if implemented properly. That means
considering a variety of factors, including
unique key collisions, scheduling of
update jobs, and methods of conflict
resolution and conflict avoidance.
Understanding the key considerations
detailed in this paper, and using a
powerful data replication solution like
SharePlex for Oracle, will enable you to
easily achieve your uptime goals with
active-active replication.

SharePlex for Oracle
has built-in conflict-
resolution procedures
for timestamp
resolution and
host resolution.

5

ABOUT QUEST
Quest helps our customers reduce tedious administration tasks so they can focus on the innovation necessary for their businesses to
grow. Quest® solutions are scalable, affordable and simple-to-use, and they deliver unmatched efficiency and productivity. Combined
with Quest’s invitation to the global community to be a part of its innovation, as well as our firm commitment to ensuring customer
satisfaction, Quest will continue to accelerate the delivery of the most comprehensive solutions for Azure cloud management, SaaS,
security, workforce mobility and data-driven insight.

© 2016 Quest Software Inc.
ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software
license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable
agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser’s personal use without the written permission of Quest
Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by estoppel
or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software products.
EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,
QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY
RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE
THIS DOCUMENT, EVEN IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software
makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

Patents

Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current
information about applicable patents for this product, please visit our website at www.quest.com/legal.

Trademarks

Quest, SharePlex and the Quest logo are trademarks and registered trademarks of Quest Software Inc. in the U.S.A. and other
countries. For a complete list of Quest Software trademarks, please visit our website at www.quest.com/legal. All other trademarks,
servicemarks, registered trademarks, and registered servicemarks are the property of their respective owners.

Whitepaper-ActActRep-US-EC-24993

If you have any questions regarding your potential use of this
material, contact:

Quest Software Inc.
Attn: LEGAL Dept
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our Web site (www.quest.com) for regional and international
office information.

