
WHITE PAPER

Managing
Windows with
Puppet Enterprise

puppetlabs.com

2White paper — Managing Windows with Puppet Enterprise

Contents
3	 Basics first	
5	 Get up and running with the essential Windows modules
5	 ACL
5	 Chocolatey
6	 DSC
6	 PowerShell
6	 Reboot
7	 Registry
7	 WSUS client
7	 Download_file
8	 IIS
8	 Windows environment
8	 Windowsfeature

9	 Managing Powershell DSC with Puppet
9	 Use the skills you have to do more
11	 DSC and Puppet: the best of both worlds
13	 Advanced scenario

17	 Reporting with Puppet and DSC
19	 Setting up Windows for system and application monitoring
19	 Monitoring with Puppet and Nagios

23	 Patch management on Windows with Puppet
23	 Managing patches with Puppet
24	 Chocolatey and Puppet

25	 Managing software on Windows with Chocolatey
26	 Creating packages

27	 Deploying IIS and ASP.NET with Puppet
31	 Active Directory management
31	 Installing Active Directory with Puppet
32	 Managing Windows users and groups with Puppet
34	 Managing Active Directory with Puppet

35	 Puppet and Microsoft Azure
37	 Conclusion

http://puppet.com
http://puppetlabs.com

3White paper — Managing Windows with Puppet Enterprise

Puppet Enterprise makes configuring and maintaining a large Windows-
based infrastructure simple and straightforward. With Puppet modules, you
can easily deploy Windows servers, install Windows software across multiple
machines, build and deploy ASP.NET websites, manage software patches, run
PowerShell scripts, and even deploy Windows Azure machines.

We've ordered the following chapters so you can get your Windows
infrastructure puppetized in a clear and logical way.

Basics first	
Puppet helps you manage basic configurations for any server, including services, administrator accounts,
and scheduled tasks. If you haven't installed Puppet Enterprise yet, this section of the Puppet Docs site will help
you do that. There's also a good section in the Puppet Docs site about managing Windows configurations
with Puppet Enterprise, but for now, we'll show you some simple examples.

Let's start by managing the Windows Time service. The following code ensures that this service is up
and running on a server:

service { 'w32time':
 ensure => 'running'
}

In this manifest, we identified that we wanted to manage a service called w32time, and that its state
should be running. In general, to ensure that a service is running, you can follow this pattern:

service { '<service name>':
 ensure => 'running'
}

Another basic task that you may want to automate is a scheduled task. Regularly scheduled tasks
are often necessary for Windows machines to perform routine system maintenance. For instance, if
you need to clean out the C:\Windows\Temp directory of your server each day at 8:00 a.m., you could
manage that task in Puppet as follows:

http://puppet.com
http://puppetlabs.com
https://docs.puppet.com/pe/latest/windows_installing.html
https://docs.puppet.com/pe/latest/windows_config_mgmnt.html
https://docs.puppet.com/pe/latest/windows_config_mgmnt.html

4White paper — Managing Windows with Puppet Enterprise

scheduled_task { 'Purge global temp files':
 ensure => present,
 enabled => true,
 command => 'c:\\windows\\system32\\cmd.exe',
 arguments => '/c "del c:\\windows\\temp*.* /F /S /Q"',
 trigger => {
 schedule => daily,
 start_time => '08:00',
 }
}

In this example, we have a resource called scheduled_task that has a number of parameters
dictating whether the task is enabled or disabled, which arguments to pass to the command
being run, and even which trigger will cause the scheduled task to run.

Finally, you may want to manage the group of administrators that have elevated permissions on a
given server. How do we manage that? Say you have a domain user who is not currently present
in the Domain Administrators group, and you want to add them to the Local Administrators
group on a server. You can use this Puppet code:

group { 'Administrators':
 ensure => 'present',
 members => ['DOMAIN\\User'],
 auth_membership => false
}

In this case, auth_membership is set to false to ensure that DOMAIN\User is present in the
Administrators group, and to ensure that other accounts that might be present in Administrators
are not removed. With a couple of basic configurations, Puppet ensures that your Windows
server is configured the way you want.

Now let's move on to some of the most common things Windows administrators do with Puppet
Enterprise.

http://puppet.com
http://puppetlabs.com

5White paper — Managing Windows with Puppet Enterprise

Get up and running with the essential Windows modules
The Puppet Enterprise Windows module pack is a collection of the most essential Windows
modules available on the Puppet Forge. It has everything you need to get started using Puppet
on Windows, including:

•	 ACL

•	 Chocolatey

•	 DSC

•	 PowerShell

•	 Reboot

•	 Registry

•	 WSUS client

•	 Windows environment

•	 Download_file

•	 IIS

•	 Windowsfeature

ACL

The Puppet ACL (or Access Control List) module controls permissions for files in Windows
environments. This example controls permissions on a particular directory:

 acl {'c:/temp':
 	 permissions			 => [
 	 { identity => 'Administrators', rights => ['full'] }
],
 	 purge				 => true,
 	 inherit_parent_permissions 	 => false,
 }

There's no need to purge or turn off inheritance. The Puppet ACL module works with files, and
could potentially have support for services and registries.

Chocolatey

Chocolatey is a package manager for Windows that can manage and configure software
installations across your entire Windows infrastructure. In this simple example, we're using
Puppet to install Chocolatey itself and make sure it stays up to date.

 include chocolatey

 package {'git':
 ensure => latest,
}

You can find the Puppet Supported Chocolatey module here. Chocolatey is also covered more in
the section Managing software on Windows with Chocolatey.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/puppetlabs/acl
https://forge.puppet.com/puppetlabs/chocolatey
https://forge.puppet.com/puppetlabs/dsc
https://forge.puppet.com/puppetlabs/powershell
https://forge.puppet.com/puppetlabs/reboot
https://forge.puppet.com/puppetlabs/registry
https://forge.puppet.com/puppetlabs/wsus_client
https://forge.puppet.com/badgerious/windows_env
https://forge.puppet.com/puppet/download_file
https://forge.puppet.com/puppet/iis
https://forge.puppet.com/puppet/windowsfeature
https://forge.puppet.com/puppetlabs/acl
https://forge.puppet.com/puppetlabs/chocolatey

6White paper — Managing Windows with Puppet Enterprise

DSC

Puppet Enterprise is integrated with Microsoft PowerShell desired state configuration, or DSC.
In this example of using the DSC module, a Puppet DSC resource disables a firewall port. It's a
common task for Windows admins, and it's easy to roll out across your entire infrastructure with
Puppet.

 dsc_xFirewall {'inbound-2222':
		 dsc_ensure		 => 'present',
		 dsc_name		 => 'inbound2222',
		 dsc_displayname 	 => 'Inbound DSC 2222',
		 dsc_displaygroup	 => 'A Puppet + DSC Test',
		 dsc_action		 => 'Allow',
		 dsc_enabled		 => 'false',
		 dsc_direction		 => 'Inbound',
}

For more information about DSC, see the section Managing Powershell DSC with Puppet.

PowerShell

Puppet Enterprise has full PowerShell support. In this example, Puppet first checks to see if the
Windows power management scheme is set to performance, before ensuring that it is.

 # performance power scheme GUID
 $guid = '8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c'

 exec { 'set performance power scheme':
 command => "PowerCfg -SetActive ${guid}",
 path => 'C:\Windows\System32;C:\Windows\System32\
WindowsPowerShell\v1.0',
 unless => "if((Powercfg -GetActiveScheme).Split()[3] -ne '${guid}')
{ exit 1 }",
 provider => powershell,
 logoutput => true,
 }

Reboot

Puppet can reboot Windows machines across an infrastructure. There are two ways to reboot
Windows machines with Puppet. In this example, the system detects there's a pending reboot.
You can also set a mode to refresh only.

 reboot {'reboot_pending':
 	 when 		 => pending,
 	 timeout 	 => 15,
}

The command can also be used in conjunction with configuration changes or software
installations.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/puppetlabs/dsc
https://forge.puppet.com/puppetlabs/powershell
https://forge.puppet.com/puppetlabs/reboot

7White paper — Managing Windows with Puppet Enterprise

Registry

The Puppet Registry module can create and manage Registry keys and values directly. In this
example, Puppet is editing the Registry to turn off auto login ability.

 registry_value {'HKLM\SOFTWARE\Microsoft\Windows
 NT\CurrentVersion\WinLogon\AutoAdminLogon':
 	 ensure => present,
 	 type	 => dword,
 	 data	 => 0,
 }

WSUS client

The Windows Server update services (WSUS) module can manage Windows updates internally
instead of reaching out to Microsoft's servers. In this example, the WSUS module is scheduled to
make updates from a internal server every Tuesday at 2:00 a.m.

 class {'wsus_client':
 	 server_url			 => 'https://internal_server:8530',
auto_update_option		 => "Scheduled",
 	 scheduled_install_day	 => "Tuesday",
 	 scheduled_install_hour	 => 2,
}

For more information about WSUS, see the section Patch management on Windows with Puppet.

Download_file

Download_file is a simple module that downloads a file or files to a Windows machine. In this
example, it's downloading the .NET framework from Microsoft to a directory on a machine.

 download_file { '.NET Framework 4.0':
 	 url		 =>'https://download.microsoft.com/download/9/5/A/95A9616B-
7A37-4AF6-BC36-D6EA96C8DAAE/dotNetFx40_Full_x86_x64.exe',
 	 destination_directory => 'C:\temp'
}

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/puppetlabs/registry
https://forge.puppet.com/puppetlabs/wsus_client
https://forge.puppet.com/puppetlabs/acl
https://forge.puppet.com/puppetlabs/download_file

8White paper — Managing Windows with Puppet Enterprise

IIS

The Puppet IIS module can create sites, manage application pools and more. In this example,
Puppet is setting up a pool and a site called The Server. Paths, ports and much more can be
designated in the parameters.

 iis::manage_app_pool { 'somepool':
 	 enable_32_bit			 => true,
 	 managed_runtime_version	 => 'v4.0',
 } ->
 iis::manage_site { 'TheServer':
 	 site_path	 => 'c:\sites\server',
 	 port		 => '8080',
 	 ip_address	 => '*',
 	 app_pool	 => 'somepool',
}

Windows environment

Managing environmental variables is very important in Windows. In this example, Puppet ensures
a particular set of variables are installed in the c:\tools\bin path, and sets them to
merge mode. Also note that the module can manage environmental factors per user.

 windows_env { 'ValueOnPat':
 	 ensure 	 => present,
 	 variable	 => 'PATH',
 	 value		 => 'c:\tools\bin',
 	 mergemode	 => insert,
}

Windowsfeature

Windowsfeature can turn Windows features on or off. With just a few lines of code, it can ensure
that IIS is installed and that ASP.NET is configured to be used for Windows Server 2012:

 windowsfeature { 'Web-WebServer':
 } ->
 windowsfeature {'Web-Asp-Net45':}

These are just some of the modules that are included in the Windows module pack. You'll find
more on the Puppet Forge.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/puppet/iis
https://forge.puppet.com/puppet/windowsfeature
https://forge.puppet.com/

9White paper — Managing Windows with Puppet Enterprise

Managing Powershell DSC with Puppet
Puppet and PowerShell DSC can work together to make a powerful management tool. The
Puppet DSL (domain-specific language) is very similar to PowerShell DSC syntax, making it
easy to transition between the two. It's possible to migrate a PowerShell DSC configuration
script to a Puppet manifest with just a few text edits, and you end up with less code. And you
don't have to go it alone when managing your systems — there are thousands of resources
from Puppet, Microsoft, and the community that can be used right away to work with multiple
platforms across diverse environments.

Puppet provides rich management capabilities that can layer on top of DSC, including node
classification, status of nodes, global-based access control, and more. Tracking and reporting
change are easier with Puppet — and reporting is a must for any company that has to do any
kind of compliance auditing. To learn more, see the chapter Reporting with Puppet and DSC.

Use the skills you have to do more

If you have PowerShell experience, you'll find that the Puppet DSC module is easy to use. DSC
works like Puppet in many ways. It's declarative, uses a similar syntax and similar terminology.
With Puppet, you can use your existing PowerShell DSC skills and knowledge to fix problems,
without having to learn a new system up front. Oftentimes, a Puppet manifest will require you to
write less code than a PowerShell DSC configuration script.

Let’s take a look at PowerShell DSC configuration script on the left and a Puppet manifest on the
right. Both compress a log directory and ensure a file is present on the system with specific text
inside it. You can see in the next image that you can copy and paste your existing DSC code into
a Puppet manifest, and be up and running with just a few text edits.

http://puppet.com
http://puppetlabs.com
https://docs.puppet.com/puppet/4.7/reference/lang_summary.html

10White paper — Managing Windows with Puppet Enterprise

There are only a few syntactical differences to account for when you're migrating to a Puppet
manifest:

•	 Add the prefix dsc_ to all resource declarations and to all parameters.

•	 Change equal signs into hashrockets.

•	 Add commas to the end of each line.

These are simple, short changes that make sense. The syntax is similar, so there's no cognitive
dissonance switching from a PowerShell DSC resource to a Puppet module declaration. You'll
notice there's less to write using Puppet — no configuration blocks to add, no DSC Resource
module import declarations to keep track of. Just the individual components you need to get the
job done. All PowerShell DSC types are supported in Puppet, including base types like integers,
complex types like PS Credentials, and even custom bindings.

Moving your PowerShell DSC to Puppet is just the beginning. You can do much more when you
use PowerShell and Puppet together.

http://puppet.com
http://puppetlabs.com

11White paper — Managing Windows with Puppet Enterprise

DSC and Puppet: the best of both worlds

Every developer or system architect reuses existing code. That's why the Puppet DSC module
uses 200-plus PowerShell DSC Resources that have already been released and tested by the
PowerShell community. Some of these resources also cover scenarios not yet addressed by
Puppet. There are also more than 4,500 Puppet modules on the Puppet Forge to support
almost all operating systems, platforms and resources across the data center — Windows, Linux,
network devices, storage arrays, containers, cloud infrastructures and more.

This means that whatever situation you're trying to address, there's likely a Puppet module or
DSC Resource that can help you. Getting things done fast and correctly is key, and using existing
Puppet modules or DSC Resources streamlines your work by plugging in already-tested code
that solves the problems you're faced. You don't have to write code yourself — you can use the
work from Puppet, Microsoft, or the community to get the job done. You'll also likely run into
a situation where either Puppet or DSC doesn't cover the entirety of the problem all by itself.
Instead of trying to make one solution fit all, you can mix and match Puppet and DSC to address
the problem.

For example, one common task is updating a configuration file and restarting a system after a
product is installed. We can model this by first declaring a PowerShell DSC resource that will
handle installing MSI. Then we'll use the Puppet file module to ensure that the file is present
on the target node, and continues to use the text we want. Lastly, we'll set the Puppet service
module to ensure that the service is running.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/

12White paper — Managing Windows with Puppet Enterprise

Notice that the line in the file declaration says the service module will be notified. That means
if the file module changes anything, it will send a notification to Puppet to tell the service
module to perform a refresh. The service module doesn't know anything about the config file or
when it changes. It just receives the notification from Puppet, and initiates a refresh or restart.
These change notifications make Puppet a powerful way to model and control change in your
environment.

In this example, Puppet will start up, run, process the file, create the catalog, make the
dependencies and examine the system to see if it needs to perform a certain set of operations.

	

http://puppet.com
http://puppetlabs.com

13White paper — Managing Windows with Puppet Enterprise

Puppet will install the product, start the service, set the configuration file and then restart the service.

Advanced scenario

Now you've seen a simple example of how Puppet and DSC can work together, let's move on to a
more complicated example: how to deploy an ASP.NET website.

This example is more complicated, because there are several software modules needed for the
ASP.NET website to run, as well as configuration settings that need to be set. We're using DSC
along with Puppet because the IIS DSC resource has some features that we don't have in Puppet
yet. And it will let us get the website up and running quickly.

http://puppet.com
http://puppetlabs.com

14White paper — Managing Windows with Puppet Enterprise

Above, you see two script files. On the left is our existing PowerShell DSC configuration file; on
the right is the Puppet manifest that we ported from the DSC configuration file. When we move
to the Puppet manifest, we immediately see a reduction in code ceremony that results in less
code written, and less to think about when writing it.

We immediately see several benefits after writing the Puppet manifest. We don't have to worry
about listing the DSC Resources module imports. We don't have to worry about having a correct
configuration block declaration.

We can describe the dependencies between the resources using the simple dependency symbol,
which results in less to write, as well as making it easier to move resources without having to
update the syntax. In the Puppet manifest, global parameter defaults reduce the amount of
repetitive code you have to write.

http://puppet.com
http://puppetlabs.com

15White paper — Managing Windows with Puppet Enterprise

Even in a complicated example like the one above, the syntax is nearly one-to-one. Someone
looking at a PowerShell DSC configuration can look at the Puppet manifest file and immediately
understand what's going on.

When we run the Puppet manifest, we see the output below.

http://puppet.com
http://puppetlabs.com

16White paper — Managing Windows with Puppet Enterprise

You can see in the output above that the Puppet run has finished — and in just over 18 seconds.
Here's the fully functioning ASP.NET website that was installed:

http://puppet.com
http://puppetlabs.com

17White paper — Managing Windows with Puppet Enterprise

Reporting with Puppet and DSC
Change reporting is a must for any company that has to comply with auditing. Being able to
pinpoint when something has been successfully changed is a huge step toward gaining true
control over your environment.

Seeing changes across your environment in an easily accessible manner reduces the amount
of time spent verifying the change. You don't have to manually check the state, because the
data is already collected for you. Historical reporting is equally important, because knowing
when something broke is just as important as knowing what broke. If you can find out when the
change happened, correlation to other events becomes easier, and reduces the amount of time
you spend troubleshooting.

PowerShell DSC does not keep historical data on changes performed, but it does provide some
ways for you to manually find out what changed. PowerShell shows the status of the whole
operation, not the status on a resource-by-resource basis. This provides a good indication of
the state of the last run, but you can't find out what changed over time. In PowerShell 4, this is
accomplished by using the event logs and searching for the last run result. In PowerShell 5, you
can use the Get-DscConfiguration status command to get the same information.

PowerShell results are available only for the target node, unless a DSC pull server is set up. The
DSC pull server can store the last result for all the target nodes that have been configured to
point to it. But it still requires a manual call to get to the information. You can script these calls
to generate reports, but it's not built in.

Puppet can extend DSC by providing historical change tracking and reporting. Configuration
results and history are available on the target nodes, as well as in the Puppet server Web UI.
The Web UI provides a single interface that shows the status of your environment, down to the
individual servers. It even shows resource-by-resource change. It shows the result of each DSC
resource execution, and a log of the execution as well. Puppet keeps all of these reports. This
lets you investigate over time how things change in your environment.

But how do you find errors that occur during a DSC configuration run? You can easily search
the event log. It can be done manually with the event viewer, or by using the DSC diagnostics
module commands Get-DscOperation and Trace-DscOperation. They can be run either
locally or remotely.

Get-DSC Operation lists the statuses for the last few DSC operation runs, and returns an
object that has information about the time it was created, whether the run was successful, and
all the events generated by that run. You can use this command to find the specific DSC job that
created the condition you want to investigate.

http://puppet.com
http://puppetlabs.com

18White paper — Managing Windows with Puppet Enterprise

Trace-DscOperation takes the job ID or sequence ID from the Get-DscOperation command
as parameters, and delivers a readable list of events that were generated by the respective
operation. By default, Trace-DscOperation will list all the events generated. This command
returns an object that contains the properties, like the event type, event message, and event
creation. The results of this command are what you use to figure out which part of the DSC
configuration is failing, and what the root cause is.

In Puppet, it's a different experience. With Puppet, errors are put up front. And they're easy
to diagnose, because they're in the same UI used to finds errors in DSC. These are the same
messages you would see in the DSC, in the event log, or in the PowerShell console. But instead,
they're viewable inside the Puppet Server UI. That means they can be exported in reports,
investigated at later times, or examined among servers in your environment.

Puppet automatically logs the results of all of the actions taken either by Puppet or DSC. So you
can review exactly what happened without having to go to the target node or run commands
manually yourself. This is a huge time saver when you're on the line to figure out why something
went wrong. It's just a few clicks, compared to several minutes running commands and searching
through events.

http://puppet.com
http://puppetlabs.com

19White paper — Managing Windows with Puppet Enterprise

Setting up Windows for system and application monitoring
Consistent monitoring is crucial for any IT shop. When an incident happens — a system goes
down, experiences unusually heavy load, or an application isn't performing properly — you'll
want to be able to diagnose it quickly and accurately.

Puppet can deploy web applications with robust measuring tools in an automated way, whether
you have 100 nodes or 1,000. And Puppet can be used with a wide range of monitoring solutions,
including Windows monitoring tools.

Let's look at how monitoring works with Puppet and a couple of popular monitoring tools.
Nagios is a very popular monitoring tool that traditionally has been used with Linux, but it
can also be used with Windows systems. The Nagios and NSClient can deliver metrics about
server configuration, load, and more. There are also plugins to monitor IIS servers, traffic and
application status. New Relic can also be used with Windows to gather even more information
about servers.

Monitoring with Puppet and Nagios

Puppet can easily coordinate the relationship between Nagios servers and agents. In this
example, Puppet will be used to run Icinga (a version of Nagios) on a CentOs machine. There will
be two Windows machines, master and server 2012 boxes. (In this example, the Puppet agent has
been installed on all machines.)

http://puppet.com
http://puppetlabs.com

20White paper — Managing Windows with Puppet Enterprise

With Puppet, adding the necessary components to Windows machines for Icinga monitoring is as
simple as adding a class to the server profiles in Puppet. The class profile::icinga_win_node
uses the Windows installer Chocolatey to install the components needed to link Windows servers
to Icinga on the CentOS machine.

After adding the Icinga class, trigger a Puppet run from the dashboard or from the Puppet
console. Puppet will automatically install and configure all the components, then link the
Windows machines back to Icinga. NSClient++ will run locally on the Windows machine and
report metrics back to your Icinga server — like CPU load, whether updates need to be installed,
all the information around memory and capacity that will be related to that system.

The Icinga dashboard shows metrics about the Windows machines' performance:

http://puppet.com
http://puppetlabs.com

21White paper — Managing Windows with Puppet Enterprise

New Relic monitoring can also be used with Puppet. Add the profile::newrelic_server class.
Then define the source of the New Relic component and the license information in the Puppet
code for that class:

 node default {
 	 class {'newrelic::server::windows':
 		 newrelic_license_key => 'your license key here',
 	 }
 	 class {'newrelic::agent::dotnet':
 		 newrelic_license_key => 'your license key here',
 }

After setting license keys in the Puppet code, the New Relic class can be used to install and
configure a New Relic agent on every Windows server in your infrastructure. With Puppet, New
Relic can be further customized to monitor individual apps and Windows servers.

http://puppet.com
http://puppetlabs.com

22White paper — Managing Windows with Puppet Enterprise

You can use Puppet modules to build a fully functional .NET website. The next example will show
how to use Puppet not only to install a .NET site, but also to monitor it.

From the Puppet console, add the corresponding classes to automatically set up applications,
SQL server components and database components. In this example, the Windows server has
already been configured with these components.

After setting up a .NET site, add a New Relic class that will collect information about the
application. In this case, it's the profile::newrelic_win_node class, which manages the
Windows feature for installing IIS and the additional New Relic components.

After Puppet installs the components, we can see that the server is now reporting CPU usage
and processes, including information about the MySQL instance. In this example, the app is
vCloudShop, a simple shopping cart.

As the server and application runs, New Relic will deliver more detailed graphs and metrics
around each one of the app components.

http://puppet.com
http://puppetlabs.com

23White paper — Managing Windows with Puppet Enterprise

Patch management on Windows with Puppet
Windows has a number of technologies that enable effective patch management on the
operating system layer. Operating-system patches can be stored in a central repository, which
can live on the internet, through Windows Update, or you can host the repo internally.

Windows Server Update Services (WSUS) and System Center Configuration Manager (SCCM) are
both used to distribute patches in a Windows infrastructure. WSUS distributes updates through
Microsoft Update, and pulls them into your organization through a WSUS server. Rather than going
directly to Windows Update, updates are downloaded to one or more target WSUS servers. Those
servers then stage the updates, and clients pull them from those servers to their systems.

SCCM integrates with and extends the functionality of WSUS, providing enhanced capabilities
that help automate patch management workflows in a way that wasn't possible with WSUS alone.
SCCM lets you define targets or deployment of patches, and define schedules for downloading
updates and making them available to servers. SCCM can also indirectly manage WSUS clients
behind the scenes by pushing an updated schedule for patch delivery to target systems.

These technologies are generally used by sysadmins to keep the operating system up to date.
Application updates are generally managed by other teams through other means. This reinforces
the traditional notion of the operating system as a platform.

Managing patches with Puppet

With Puppet, OS patches and application updates are treated as interlocking pieces. Patches and
application updates can be tested and deployed together. With package management, updates
can be delivered from curated repositories. Packages are atomic bundles that support versioning
and metadata. When software is distributed with packages, sysadmins can check to make sure
the latest version of the application is installed, and check for other software it may depend
on. Finally, packages can also allow scripts to be run. These scripts can be used to remove
temporary files after package installation.

Packages can be hosted on a centralized repository, which allows them to be searched and
maintained more easily. This notion of centralized package management is fundamental to the
way that Puppet manages application state. Although Linux has used package management for
quite some time, this isn't something that has always been a part of the Windows application
management methodology. However, in the last several years, more Windows package
management tools have emerged.

http://puppet.com
http://puppetlabs.com

24White paper — Managing Windows with Puppet Enterprise

Chocolatey and Puppet

Chocolatey, described in the chapter Managing software on Windows with Chocolatey, is a
Windows package manager developed by Puppet software engineer Rob Reynolds. Chocolatey
can be used to manage third-party and internal software. It has the notion of dependencies
and versions, and allows you full access to PowerShell for the automation scripts with built-in
functions that can reduce complex tasks down to simple function calls.

Chocolatey can be used to install or uninstall any application and its dependencies. This allows
patches to be applied much more naturally at the application level. It is also possible to associate
a patch level of the operating system with a patch level of all the other applications running on
a system.

With Puppet and Chocolatey, we can now completely manage the state of a package on Windows
automatically. For example, MySQL can be installed and configured on a Windows system using
Puppet and Chocolatey:

 file { 'c:/mysql/my.ini':
 ensure => 'file',
 mode => '0660',
 owner => 'mysql',
 group => 'Administrators',
 source => 'N:/software/mysql/my.ini',
 }

Puppet can also manage the state of the installed packages on the system:

 package{ 'mysql':
 ensure => latest,
 }

Microsoft's Desired State Configuration (DSC) works in a very similar way to Puppet. DSC
manages Windows-native resources with code. DSC is fully compatible with Puppet, which
means Puppet code can be used to define DSC. Patches can be treated as things that apply to
the entire system.

Here's a quick look at how to manage WSUS clients on a Windows system. This Puppet code
specifies a server URL and the patch schedule. The code can be applied to multiple systems,
and works with virtually any OS — Windows, Linux, Solaris, etc.

Class { '::wsus_client':
 server_url => 'http://server2012r2a.puppet.demo:8530',
 auto_update_option => 'Scheduled',
 scheduled_install_day => 'Tuesday',
 scheduled _install_hour => 2,
}

http://puppet.com
http://puppetlabs.com

25White paper — Managing Windows with Puppet Enterprise

Chocolatey and Puppet modules deliver full control over third-party patching. Because Puppet
works with virtually any operating system, using Puppet makes it easy to configure complex
software management across any heterogeneous infrastructure.

Managing software on Windows with Chocolatey
Chocolatey is a package manager for Windows, like Yum. It uses the NuGet packaging framework
and PowerShell for automation scripts. Chocolatey can use non-centralized and private repositories'
custom packages. Chocolatey is a Microsoft-validated tool, and any installer, zip, or binary can be
packaged with Chocolatey.

Chocolatey can manage all aspects of Windows software: installation, configuration, upgrade and
uninstalling. It works with runtime binaries, zips and all existing installer technologies, including MSI,
NSIS, and InnoSetup. Chocolatey takes advantage of PowerShell to turn complex tasks into simple
function calls.

The Chocolatey community repository has thousands of packages that anyone can use, but it
is recommended that organizations build and host their own packages on an internal package
repository server (rather than using the packages on Chocolatey.org) to allow for a completely
reliable, repeatable process, and to maintain trust and control.

The Chocolatey Puppet provider is a Puppet Supported module that can manage the installation and
configuration of Chocolatey, and manage packages (a.k.a. software management). There are three
configuration resources that allow for managing config settings, features, and repository locations
(sources). Here are examples of ensuring Chocolatey is installed:

 include chocolatey
 # OR
 class {'chocolatey':
 	 chocolatey_download_url	 => 'http://url/to/chocolatey.nupkg',
 	 }		

The first option ensures Chocolatey is installed based on its default install location at Chocolatey.org.
Most organizations will want to fully control this, so they will opt for the second option and
host the Chocolatey package and installer internally. More options can be seen at
https://forge.puppet.com/puppetlabs/chocolatey#class-chocolatey.

 package {'name_of_package':
 	 provider		 => chocolatey,
 	 ensure			 => absent, installed, latest, '1.0.0', held,
 	 source			 => 'http://some_odata_feed/;c: \\local;\\some\network\
share',
 	 install_options		 => ['-installArgs', '"', 'addtl', 'args', '"'],
 	 uninstall_options	=> ['-uninstallargs', '"', 'addtl', 'args', '"'],
 }

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/puppetlabs/chocolatey#class-chocolatey

26White paper — Managing Windows with Puppet Enterprise

The previous image shows the anatomy of a package resource. Chocolatey is the provider, and can
ensure software is removed, installed, stays up to date, is a particular version, or hold a package on
a version.

Default sources can be specified in Chocolatey itself, through Puppet code. Packages can be
pulled from one source or more (separate sources with semicolons). Sources can be a folder
share or an HTTP NuGet OData feed. It's easy to get started by using a file/folder share for your
package source, and you can easily move into a simple OData server and/or a gallery server later.
See https://chocolatey.org/docs/how-to-host-feed for more details and options.

Why Chocolatey? It's a unified interface to all different types of installers. Here's the difference
between the built-in Windows package provider and Chocolatey:

 #Built-in provider
 package { "Git version 2.6.1':
 	 ensure		 => installed,
 	 source		 => 'C:\temp\Git-2.6.1-32bit.exe',
install_options => ['/VERYSILENT']
 }

 #Chocolatey provider
 package { 'git':
 	 ensure		 => latest,
 }

Note the differences. For the built-in provider, when we need to upgrade, we'll run into
maintenance issues. We'll need to change the manifest over time. Instead, if we take a look at
the Chocolatey provider, we can see it looks just like the package provider for other operating
systems. The packaging is platform-agnostic. The exact same packaging can be used to ensure
the latest version of Git is installed across all of your platforms and operating systems.

Creating packages

When you are creating packages, we suggest you use the choco.exe client tool and/or Chocolatey's
Package Builder to do that. To get started, run choco new nameofpackage, and inspect the output.
You can also see https://chocolatey.org/docs/create-packages for detailed information on creating
packages.

When you run choco new, there are a few files in the default Chocolatey package template,
as it is meant to provide a generalist approach to account for many of the different use cases
and packaging types. Chocolatey will by default generate a README file, install and uninstall
PowerShell scripts, and create a nuspec — a way of describing the packaging format metadata.
The nuspec contains information about the version of the software, any dependencies and more.

 You can create custom templates as you start to get familiar with the different concepts of
packaging types. For instance, you could create a template strictly for MSI packages.

http://puppet.com
http://puppetlabs.com
https://chocolatey.org/docs/how-to-host-feed
https://chocolatey.org/docs/features-create-packages-from-installers
https://chocolatey.org/docs/create-packages
https://chocolatey.org/docs/how-to-create-custom-package-templates

27White paper — Managing Windows with Puppet Enterprise

Deploying IIS and ASP.NET with Puppet
Two of the most common tasks for Windows admins are deploying ASP.NET and deploying IIS.
These are both much easier to do with Puppet.

First, write a basic manifest that defines what you want, and then apply it to your Windows servers.

This is what the code looks like (note this is for Windows Server 2012, and some of the specifics
may be different for other versions of Windows):

 class widemo::iis_enable {
 Include windemo::dotnet_enable
 Windowsfeature{'IIS_NET45':
	 feature_name => [
		 'Web-WebServer',
		 'Web-Http-Errors',
		 'Web-Http-Logging',
 'Web-Asp-Net45',
 'NET-Framework-45-ASPNET',
],
 installmanagementtools => true,
 } ~>
 # Remove default binding by removing default website
 # (so it can be used by something else)
 Iis::manage_site {'Default Web Site':
 ensure => absent,
 site_path => 'any',
 app_pool => 'DefaultAppPool',
 }
 }		

Use the Windows Feature Module to enable .NET Framework 4.5. Also, enable IIS and turn on HTTP
errors and logging. Finally, use the community-provided Vox Pupuli IIS module to remove the
default binding.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/puppet/iis

28White paper — Managing Windows with Puppet Enterprise

Puppet runs and generates a report. In this case, the report shows that a couple of things
were changed:

Puppet executed the commands necessary to set up a basic web application. In addition, the IIS
management tools were installed, and the Puppet module executed PowerShell code to remove
the default website.

With the following code, Puppet can also install SQL Server Compact Edition, which our demo
ASP.NET application requires.

 class windemo::sqlce {
 $installer = 'SSCERuntime_x64-ENU.exe'
 package { 'Microsoft SQL Server Compact 4.0 SP1 x64 ENU':
	 ensure => '4.0.8876.1',
	 provider => 'windows',
	 # NOTE: would like to use this Puppet style, but must have file
	 # source => "puppet:///modules/widemo/${installer}",
	 source => "C:/vagrant/modules/windemo/files/${installer]",
	 Install_options => ['/1', '/passive'] # ['/qn'] #/l*v install
 }
 }

http://puppet.com
http://puppetlabs.com

29White paper — Managing Windows with Puppet Enterprise

Now Puppet can install a bare-bones application that uses the SQL Server installed in the
previous step. In this case, it's Razor C, which is an ASP.NET-based CMS. Here's what the Puppet
code looks like for installing Razor C:

 # == Class: mvcapp
 #
 # This class installs the razorC MVC application
 #
 class windemo::mvcapp {
 $app_zip = 'razorC_v1.1.1.zip'
 $app_zip_path = "C: \\Windows\\Temp\\${app_zip}"
 $app_pool - 'mvc'
 $app_location = 'C:\inetpub\wwwroot\razorC'
 file { "${app_zip_path}":
	 ensure => file,
	 source => "puppet:///modules/windemo/${app_zip}",
	 source_permissions => ignore,
 } ~>
 iis::manage_app_pool {"$app_pool":
 ensure => present,
 enable_32_bit => true,
 managed_runtime_version => 'v4.0',
 managed_pipeline_mode => 'Integrated',
 } ~>
 #NOTE: IIS is very touchy around extra slashes
 Iis::manage_site {'razorC':
 ensure => present,
 site_path => "${app_location},
 port => '80',
 Ip_address => '*',

Puppet has been pointed to a zip file containing the full distribution of the application. It will
copy the zip file from the module, stage it in a temporary directory, and extract it to the default
location for ASP.NET applications on disk at c:\inetpub\wwwroot. There is also an application
pool and a site mapped to Port 80, pointing to the location on disk where the Razor C application
has been extracted.

With just a short bit of manifest code, you can configure Windows to run IIS and install a CMS
application.

http://puppet.com
http://puppetlabs.com

30White paper — Managing Windows with Puppet Enterprise

The deployed application can be viewed in a browser:

http://puppet.com
http://puppetlabs.com

31White paper — Managing Windows with Puppet Enterprise

Active Directory management
Managing users and groups in a Windows environment is a big job for any sysadmin. Creating
new users and setting permissions can be arduous. Security audits can also slow things to a
crawl. With Puppet, you can manage all your users and groups from a single point of truth and
automatically ensure they remain in compliance with security standards.

Installing Active Directory with Puppet

In this example, we'll be using Puppet to install and manage Active Directory, then manage some
domain users and groups.

The first step is defining the server in our infrastructure that'll be used as a domain controller and
host Active Directory. In Puppet, we can put machines in groups defined by their attributes or facts.
Once you create a group, any new machines you add to your infrastructure will be added to that
group. In this case, we have an environment with a few Windows domain controllers, so we can
create a group that looks for them. It's easy to define a group based on operating system type using
the osfamily fact. For this example, we've created a group that only includes our single Windows
domain controller. Once we have a group, we can use Puppet to install Active Directory.

First, we'll go to the Puppet Forge and nab some code to get us started. There are dozens of
Windows modules available, but for this we'll use the windows_ad module.

Using this module, we can quickly get Active Directory installed on our server. Just change the
parameters to meet your needs — domain names, data base path, log path, etc. We install the
windows_ad module, then apply the class to the server we defined earlier. When we trigger a
Puppet run, Active Directory will be automatically installed and the system will be restarted.

Now we can move on to managing users and groups with Puppet.

http://puppet.com
http://puppetlabs.com
https://forge.puppet.com/jriviere/windows_ad

32White paper — Managing Windows with Puppet Enterprise

Managing Windows users and groups with Puppet

First, we'll define our groups in the same way we defined our servers. In this example, we'll
write code that defines our user groups. In this case, we can define users for both RedHat and
Windows with a few simple lines of code:

In this class, we're defining admin users. If the OS is RedHat, users will be placed in the wheel
group. If it's Windows, they'll be placed in the Administrators group. We can also add a
parameter that defines the users themselves. We can do this in Puppet code, or simply define
them through the Puppet console:

http://puppet.com
http://puppetlabs.com

33White paper — Managing Windows with Puppet Enterprise

When we save this code, the next time Puppet runs it will create the admin users we defined on our
Linux and Windows machines. We can define more about our users in the windows_ad module:

Here we can define many parameters, including account name, first and last names, email address,
passwords and more. You can use this module to create multiple users across your infrastructure
in minutes.		

http://puppet.com
http://puppetlabs.com

34White paper — Managing Windows with Puppet Enterprise

Managing Active Directory with Puppet

Once you've used Puppet to set up an Active Directory server, you can manage its users and groups
using the domain_membership module:

The code for this module is incredibly simple. With the class domain_membership, we can add a user
and password quickly and easily to your Active Directory server. In fact, managing users and groups
with Puppet on any OS or system is quick and easy.

http://puppet.com
http://puppetlabs.com

35White paper — Managing Windows with Puppet Enterprise

Puppet and Microsoft Azure
Microsoft has recently been working with open source communities to support a wide variety of
platforms. Azure is now an open cloud platform. Puppet is available through the Azure Marketplace,
making it easy to deploy and manage a virtual infrastructure using Puppet modules.

Deploying Puppet-managed virtual machines is now as easy as deploying any VM in Azure. And
you can enjoy the advantage of managing your Azure VMs with the same platform you use for
your physical infrastructure. Simply search for Puppet Enterprise 2016.1 Template in the Azure
Marketplace to get started.

As shown in the image below, you click on the Puppet Enterprise module to get started.
Create and configure Puppet virtual machines through the Azure dashboard. Set username/
password, then select machine size. Standard D2 V2 Azure machine configurations are highly
recommended — they're fast, inexpensive and run Puppet really well.

http://puppet.com
http://puppetlabs.com

36White paper — Managing Windows with Puppet Enterprise

A preconfigured system will be created to run and test Puppet. Storage, security ports and more
will be prefilled with common settings, but can be changed to meet specific needs.

Creating a virtual Linux machine (using Ubuntu 14.04), takes about five minutes. Once the
machine has been created, Puppet will run a set of install scripts for approximately 10 minutes.

Next, create a Windows Server 2012 R2 data center image through the Azure resource manager.
Install a Puppet extension to configure the Puppet master for each virtual machine. It's possible
to connect hundreds of agents to a single Puppet master. For examples of this, please check out
our sample template.

Once your Puppet network is set up, it's easy to visualize the network using the Azure Resource
Manager Template Visualizer:

Once you've configured and deployed your Azure network, you can manage it like any other
Puppet cluster. For more detailed instructions, check out our white paper here.

http://puppet.com
http://puppetlabs.com
https://azure.microsoft.com/en-us/documentation/templates/puppet-enterprise-cluster
http://old.armviz.io/#/
http://old.armviz.io/#/
https://puppet.com/resources/whitepaper/getting-started-deploying-puppet-enterprise-microsoft-azure

37White paper — Managing Windows with Puppet Enterprise

Conclusion
This ebook was created to help you automate Windows with the help of Puppet, a solution
that you can use to automate all your infrastructure, no matter which operating systems you're
running.

Puppet has a large, active and friendly community of people who enjoy helping each other. We
invite you to reach out to our company and the community in a number of ways:

•	 Puppet Google Group and mailing list

•	 Puppet Q&A site

•	 Puppet User Groups (PUGs)

Want to know more about how Puppet can help your organization?
Please contact sales@puppet.com.

http://puppet.com
http://puppetlabs.com
https://groups.google.com/forum/#!forum/puppet-users
https://ask.puppet.com/questions/
http://www.meetup.com/pro/puppet/

	Basics first	
	Get up and running with the essential Windows modules
	ACL
	Chocolatey
	DSC
	PowerShell
	Reboot
	Registry
	WSUS client
	Download_file
	IIS
	Windows environment
	Windowsfeature

	Managing Powershell DSC with Puppet
	Use the skills you have to do more
	DSC and Puppet: the best of both worlds
	Advanced scenario

	Reporting with Puppet and DSC
	Setting up Windows for system and application monitoring
	Monitoring with Puppet and Nagios

	Patch management on Windows with Puppet
	Managing patches with Puppet
	Chocolatey and Puppet

	Managing software on Windows with Chocolatey
	Creating packages

	Deploying IIS and ASP.NET with Puppet
	Active Directory management
	Installing Active Directory with Puppet
	Managing Windows users and groups with Puppet
	Managing Active Directory with Puppet

	Puppet and Microsoft Azure
	Conclusion

