
As with most emerging markets, the

exploding low-code and no-code segments

are fraught with confusion. Even coming up

with useful names for the offerings in these

categories is a challenge.

The big analyst firms aren’t much help.

Forrester lumps low-code and no-code

together into the Low-Code Development

Platform and Mobile Low-Code

Development platform market categories,

emphasizing mobile vs. some nebulous not-

mobile (would that be stationary, perhaps?),

rather than breaking out no-code into a

different segment.

Gartner isn’t much better. It forgoes the low-

code and no-code terminology altogether,

instead touting the Application Platform-

as-a-Service and the High Productivity

Application Platform-as-a-Service market

categories.

For Gartner, therefore, on-premises

alternatives aren’t salient to the discussion,

as both alternatives are strictly cloud-based.

Furthermore, products that fall outside the

High Productivity aPaaS segment are, what?

Low productivity? Why would anyone buy

one of those?

Enterprise buyers are left scratching their

heads, as the low-code and no-code

terminology remains remarkably persistent,

in spite of Gartner’s exhortations to the

contrary. Even so, these more popular terms

are themselves laden with confusion of

their own.

It’s time to clear things up.

Low-Code vs. No-Code: It’s
not about ‘Code’

As a boutique analyst firm, Intellyx doesn’t

deign to name market categories. Instead,

we listen to our enterprise audience and

seek to gain insight into the direction

emerging markets are headed.

Based on many such conversations, we find

that the following definitions have moved

to the fore:

Low-Code – Next-generation rapid

application development that accelerates

and streamlines the work of professional

developers.

No-Code – Self-service application

assembly for business users who become

‘citizen developers.’

In spite of the word code appearing in both

labels, therefore, the distinction between

these market segments isn’t about whether

someone is writing code or not. The more

important distinction is the intended user.

Don’t Confuse Low-Code
with No-Code By Jason Bloomberg

In fact, the question of whether you

need to write any code or not is more

of a red herring than anything else. In

fact, it’s possible for developers to build

sophisticated applications with low-code

platforms like OutSystems without writing

a line of code – although there are certainly

reasons to write code on occasion as well.

Furthermore, most no-code platforms allow

citizen developers to write code if they like,

although coding is certainly optional for any

platform that belongs in this category.

Additionally, whenever a citizen developer

is creating an application on a no-code

platform that requires integration with

existing enterprise apps, they usually have

to call someone in IT to help with such

integrations. That techie will likely have to

write some code to implement such an

integration.

The Differentiated Value of
Low-Code

If the point of using a Low-Code platform

for professional developers isn’t about the

code-writing bit, then what is it?

Spend a few days with such an engineer,

and you’ll soon find out. Even when

they’re building applications using more

traditional tools, only a part of their focus

is on cranking out lines of code. These

pros’ broader role includes working within

the overall context of the application

architecture, understanding and modeling

requirements, and ensuring applications are

secure and high quality.

There is also an additional enterprise

context to the work of software developers.

The applications they build are rarely

stand-alone, greenfield apps. In the far

more likely scenario, any application they

build or modify must integrate with many

other applications, as well as middleware

and other infrastructure for on-premises

deployments and the self-service cloud

environment when the apps go into the

cloud – or both.

Layered on top of this enterprise

architectural context is the broader business

context, including multifaceted compliance

considerations. Seasoned software

engineers must navigate the hazards of PCI,

HIPAA, or other industry-specific regulatory

contexts, the enterprise’s security and

privacy rules, as well as established policies

and procedures for building, testing, and

deploying software in their organization.

Enterprise low-code platforms facilitate,

streamline, and accelerate all of these

mundane, time-consuming tasks, freeing

up developers to focus on building great

applications. True, they have to write

less code than traditional application

development methods require, which also

saves time.

But the real win for developers using low-

code platforms is taking care of all the cruft

surrounding the code that slows them

down.

The Hidden Pitfall of No-
Code

The no-code value proposition clearly

has appeal: non-technical users are able

to rapidly assemble business applications

using lightweight, visual, drag-and-drop

tools. As such no-code platforms mature,

the types of business applications these

citizen developers can create become

increasingly sophisticated as well.

Just one problem: enterprises have been

down this road before, folks. Remember

Microsoft Access? A database-centric

application creation tool simple enough for

even the least technical business users to

use – and use it they did. In droves.

In a few short years, some organizations had

thousands of Access-based apps running

under desks, performing important or even

mission-critical tasks, entirely off the radar

of IT.

It’s fun to pick on Access, but in reality,

there have been dozens of such tools over

the years, and they have all contributed to

Shadow IT.

Typical OutSystems interface - For the pro, but not about the code

The causes of Shadow IT are well-known:

the IT organization is too slow and process-

bound to respond quickly enough to the

needs of lines of business, so business users

go around IT and buy – or build – their own

apps and other technology.

The problems of Shadow IT, unfortunately,

are also quite familiar: without proper

oversight and coordination, security

vulnerabilities and compliance violations

can proliferate, with no one at the helm

to address such issues. Furthermore, these

citizen-built apps can be redundant,

obsolete, or otherwise low quality.

For modern no-code platforms, this Shadow

IT pitfall looms large. Certainly, some of the

more mature no-code platforms tackle

the Shadow IT issue head on, providing

lightweight ways of ensuring that apps

on these platforms are adequately secure,

compliant, and address ongoing business

needs.

Far more common, however, are less mature

no-code tools that don’t adequately deal

with these pitfalls – common because

no-code is a rapidly emerging market,

and numerous startups are frantically

rolling out their wares, putting Shadow IT

considerations on the back burner.

The Intellyx Take

No-code platforms certainly have their

place in the enterprise, but any manager

considering whether to purchase one

should take care to understand the

potential pitfalls of such tools, as well as the

tradeoffs between no-code and low-code

platforms.

For stand-alone apps that don’t require

sophisticated integration and also don’t

present security or compliance risks, no-

code can be a cost-effective means for

opening up application creation to a broad

business audience.

Once an application requires a greater

level of sophistication, however, no-code

platforms tend to fall short. Not necessarily

because they lack requisite functionality,

but because getting security, compliance,

and integration right requires technical

skill sets beyond those of a typical citizen

developer.

For all but the simplest of applications,

therefore, managers should consider the

low-code option – not only because the

apps developers can build with them can

be more varied, powerful, and responsive

than no-code apps, but also because

enterprises require the expertise of

professional developers to build their apps

property, even when code-writing itself is at

a minimum.

At that point, the decision isn’t low-code

vs. no-code, but rather low-code vs.

traditional, hand-coded development.

Given the numerous benefits that low-code

platforms like OutSystems offer professional

development teams, such a decision is an

easy one to make.

Copyright © Intellyx LLC. OutSystems is an Intellyx client. At the time of writing, none of the other organizations
mentioned in this article are Intellyx clients. Intellyx retains full editorial control over the content of this paper. Image
credit: OutSystems

Jason Bloomberg
President of Intellyx & Contributor to Forbes

