
INTRODUCTION

Data has become the new digital gold,
delivering competitive advantage to
those that have the technology to
get more out of it faster, and the tools
to derive its significance faster. Data
is at the core of almost everything
we touch, build, or experience. From
personalized customer experiences, to
predictive analytics fed by devices and
sensors at the edge, and new business
models enabled by Big Data, AI and
machine learning, it’s the data – and
the insights delivered by that data -
that differentiates the companies that
succeed.

IT is feeling the pressure as heavy
workload demands, increasing amounts
of data, and legacy code converge to
overwhelm the performance of their
missions-critical apps and threaten the
business’ ability to compete effectively.
But how do you overcome these
obstacles without expensive alterations
to your infrastructure or your apps?

DataCore offers a unique plug-and-play
software alternative.

This technical whitepaper reveals
how DataCore eliminates sluggish
I/O performance in the host with
MaxParallel™ software - leveraging the
full potential of your CPUs and memory
to yield more responsive applications
and optimal use of your resources.

WHITE PAPER

datacore.comEmpowering real-time, always-on data

SPEED IS EVERYTHING

With a spotlight on delivering faster business insights, improving performance is
a key focus for developers, business analysts, and IT admins/managers alike. There
are many different optimization strategies to consider – spanning hardware and
operating system (OS) to applications and databases - with costs and benefits
associated with each. For example, buying newer, faster hardware will likely improve
performance, but comes with long procurement cycles, and high costs. And
throwing the latest and most expensive hardware at a problem isn’t sustainable for
most businesses. Another option is to redesign your application to reduce the I/Os
required to read and write your data. Or you can re-architect the apps themselves to
manipulate how I/O is handled. Both strategies require a high degree of expertise
and are time-consuming and complex. As well, any time you manipulate your apps
and databases, you introduce risk and the potential for costly disruptions to your
business.

A key area that impacts I/O performance in the host is the operating system itself.
One of the basic roles of the operating system is to manage the various I/O devices,
such as your disc drives. For example, when an application requests data, the OS
sends the I/O request to the physical storage device, then returns the response back
to the application. But how that I/O request is handled by the operating system has
a huge impact on application performance. When handled poorly, it can defeat
performance gains expected from the latest technologies. The following section
describes some of the challenges in how the OS handles I/O requests.

APPLICATION THREADS AND THEIR IMPACT ON I/O

An application thread is a set of programmed instructions which defines a path of
execution within a process. A process that is parallelized has multiple threads which
execute independently but share OS resources like executable code and the values
of variables. Applications that need to perform multiple concurrent operations or
service large volumes of user requests, like web servers, can greatly benefit from
multi-threaded processes.

Solving Performance Bottlenecks
in Servers: A Deep Dive

2

WHITE PAPER

On multicore systems, multiple threads can execute at the same time, with several cores running separate threads
simultaneously, theoretically increasing the throughput of the system.

The challenge with multi-threaded processes is how the operating system satisfies their I/O requests and the negative impact
on application performance.

IDLE IDLE IDLEIDLE IDLE

COMPUTECOMPUTECOMPUTE COMPUTE

I/O

8 cores / 5 busy / 3 idle

IDLEIDLE

COMPUTECOMPUTECOMPUTE COMPUTE

I/OI/O I/O I/O

8 cores / all put to work

In the example on the left, you see how serial I/O processing
in the OS causes contention and delays when multiple
application threads queue I/O requests at roughly the
same time. On the right is the parallel I/O approach used by
MaxParallel™ software to ensure fast, concurrent access to
data. In the section below, we’ll dive in deeper for a greater
understanding of where and how efficiencies can be applied
to remove contention and latency, thereby significantly
increasing responsiveness and throughput.

CHALLENGES WITH I/O REQUEST HANDLING

In this section, we look at some of the different approaches
that operating systems service I/O requests from application
threads.

Synchronous vs. Asynchronous

Multi-tasking with asynchronous I/O is commonly used
when applications are expected to be waiting for data to be
returned by the storage device. The requests are queued
in order for other applications to take advantage of the
processors in the meantime. In contrast, synchronous I/O
puts the thread of execution in an idle state until the I/O

request is completed – without releasing the processing
resources. While there are different reasons for utilizing one
technique over the other, one of the primary reasons is the
difference in processing speed between the CPU and the
storage device.

Asynchronous I/O

In the past, CPUs and RAM in hosts were much faster than
storage (typically spinning discs), making it inefficient for
the CPU to wait for storage to complete I/Os. To avoid these
inefficiencies, I/O requests were handled asynchronously,
freeing the CPU to do something else until alerted that the
disc I/O completed.

To see how this works, consider the following diagram.

1. An asynchronous request is made by the application thread.

2. The disc is notified of the request and the thread goes into
a wait state. The CPU is reassigned to process other threads.

3. When the data has been retrieved by the disc, an interrupt
service routine (ISR) is executed.

Diagram 1: Serial vs. parallel approaches to satisfying I/O requests

3

WHITE PAPER

4. A deferred procedure call (DPC) is then executed, giving priority to the interrupt handler and deferring less important tasks
until later.

5. Finally, the asynchronous procedure call (APC) completes the disc I/O.

The cost of the context switches between applications vying for the CPUs is relatively small when compared to the time it
takes for the disc to process the I/O.

APPLICATION

File System (NTFS)

Hardware Interface

Volume Management

Disc Class

I/O Request

HDD Technology

μsec msec 10s to 100s μsec

ISR

DCP

APC

Do other work

Diagram 2: Asynchronous I/O with spinning disc technology

Diagram 3: Asynchronous I/O with low-latency solid state drives

Solid State Drives (SSDs) cause us to rethink this approach.
While still orders of magnitude slower than the CPU, the
response times of the latest SSDs have reduced latency
significantly. As you can see in diagram 3, data is now being
returned from disc so fast that in an asynchronous model,
the CPU is constantly getting interrupted, adding a lot of

APPLICATION

File System (NTFS)

Hardware Interface

Volume Management

Disc Class

I/O Request

SSD Technology

μsec μsec 10s to 100s μsec

Do other work ISR

DCP

APC

unnecessary overhead. Now add multiple cores and multiple
threads of execution to this picture and the problem just gets
compounded. It’s like the difference between a conversation
between 2 people in a room and a conference call with 50
people on the line, vying for attention and talking over each
other.

4

WHITE PAPER

Synchronous I/O

As shown in diagram 4, with synchronous I/O, the application
thread spins actively until the I/O request is completed. This
polling state effectively blocks it from performing other
tasks, but it also eliminates the now significant overhead of
interrupt handling and context switching. When using fast

SSD technology on multicore systems, real-time synchronous
processing techniques make more sense – especially when
it comes to latency-sensitive workloads that demand quicker
attention.

Diagram 4: Synchronous I/O

1. A synchronous request is made by the application thread.

2. The SSD is notified of the request and the thread spins
actively while waiting.

3. When the data has been retrieved by the disc, the thread
continues processing.

Now that we understand how I/O requests from an
application thread are processed in both synchronous and
asynchronous approaches, let’s look at the impact that
multiple application threads have on I/O performance.

Multiple application threads

Multiple application threads execute concurrently and
take better advantage of multicore systems. For example,
an application can execute longer-running tasks in the
background while still remaining responsive to user input
versus a serial approach which would freeze the application
while waiting for the task to complete.

In general, multi-threaded applications deliver better system
utilization because threads that need to retrieve data from a
slower storage medium such as a spinning disc (internal or
external) do not hold up those threads whose data resides in
local cache. That said, the more threads there are, the more
points of contention can occur between the threads and the
hardware devices if not handled properly.

Cache line contention

Another problem that can occur with multiple threads is cache
line bounce due to cache line contention. To understand the
concept of cache line bounce, let’s take a deeper dive into the
concept of cache lines.

CPUs move data between memory and cache in blocks of
64 bytes called cache lines which contain the copied data
and a tag that denotes the memory location. The cache line
improves performance by enabling the processor to retrieve
data from the fast L1 caches in the CPU versus going to slower
off chip RAM. When the processor needs to access a memory
location – say, to fetch a long word into a core register or store

APPLICATION

File System (NTFS)

Hardware Interface

Volume Management

Disc Class

μsec μsecμsec

Disc Device

I/O Request Complete
I/O Request

Application
thread
actively

spins while
waiting

5

WHITE PAPER

a register into a memory location in the L1 cache line - it
first checks to see if that memory location exists in a cache
line of the core’s L1 cache. If it does, it reads or updates the
contents in the cache line. If it doesn’t, it has to retrieve the
corresponding cache line from RAM into the core’s L1 cache
before executing the operation.

Since threads within the same process share the same
address space, there is always the possibility that multiple
threads – each on a different core with its own L1 cache -
may end up trying to update a common memory location.
Multicore systems implement special cache coherency
protocols to coordinate such access to common cache lines.

The first core to update a memory location locks the cache
line so that no other core can update its own cache line until
the lock has been released. The first core then flushes the
updated cache line to RAM. Now all other cores with that
cache line are notified that they no longer have the latest
copy in their L1 cache. If they subsequently need to access
any memory location in that cache line, they must refetch it
from RAM in order to get the most up-to-date values.

Now imagine a 72 core system with 72 threads of execution
all attempting to read or update the same location in
memory. The resulting fetching and flushing of cache lines is
referred to as cache line bounce and can significantly impact
application performance.

Spinlocks

For more complex shared data structures, programmers
need higher level abstractions to manage access to
shared data, beyond the primitives in the cache coherency
protocols. Operating systems offer programmers higher-
level synchronization tools such as spinlocks to coordinate
each core’s access to a shared data structure. Here also,
system performance can degrade considerably with highly-
contentious spinlocks. Since spinlocks have memory
locations associated with them, they can affect operating
system scheduling and interrupt processing. The result can
be severely degraded system performance.

In multicore systems with fast media such as SSD, it is
important to program the system software to avoid these
issues. Without careful consideration, your multicore system
with multiple SSD devices may behave like a single processor
system with only a few SSD devices.

UNDERSTANDING THE I/O STACK

When looking to optimize storage performance, it’s important
to understand the I/O stack and what takes place at each layer.
This provides a basis of understanding where it’s possible to
bypass old legacy code and implement optimizations at a
higher level in the stack.

APPLICATION

SOFTWARE

HARDWARE

DATABASE / APPLICATIONS

IP Stack

NIC Driver

SW iSCSI

File System (NTFS)

Filter Drivers

Disc Drivers

ClassPNP

NVMe Fibre Channel

Diagram 5: The I/O stack

1. The file system translates the I/O requests into calls to other
drivers below it in the I/O stack

2. Filter drivers are software that are inserted into the I/O Stack
and are used to alter the behaviour of an I/O request for a
device or class of devices. Upper level filters sit above the
primary device driver and are typically used to deliver value-
added features or functionality to the device. Multiple filter
drivers can be layered on top of each other but will add
additional processing that slows the system down

3. The disc drivers interact with hardware components such as
storage devices to carry out the specific actions requested
by the operating system.

4. At the hardware level, you have different disc devices that
have different interfaces.

INTRODUCING MAXPARALLEL: ADDRESSING
I/O INEFFICIENCIES IN THE OPERATING
SYSTEM

Now that we’ve explored some of the challenges that exist in
the operating system, let’s look at how MaxParallel software

6

WHITE PAPER

addresses them with a simple plug-and-play enhancement
to your existing environment.

A new filter driver above all of the rest

MaxParallel software deploys as an intelligent filter driver that
sits above the other disc drivers and performs a series of I/O
optimizations based on the type of application I/O request.
The goal is to optimize I/O locally (on the host) and avoid the
negative performance impacts inherent in the original I/O
code.

As depicted in Diagram 5, upper level filters reside just below
the file system and can be used to enhance I/O processing
without requiring changes to apps. This is very important
because the programming model is preserved, thus
avoiding any impact to existing code – much of which may
be mission-critical to the business. By installing MaxParallel
as an upper level filter driver on the disk class, all app threads
will first go to the new filter driver before the disc driver and
MaxParallel has the opportunity to process the I/O directly
without serializing or queuing up the request and having to
go out the disc device.

Some of the ways that MaxParallel optimizes I/O performance
include:

1. Leveraging the filter driver’s local memory store to
reduce backend roundtrips

By allocating local cache in RAM and proactively bringing
in complementary blocks of data, many of the read/write
requests can be satisfied immediately without queueing up
for physical disc I/O. Why is this important? Well, accessing
data in local RAM is about 100x faster than flash, so satisfying
requests via local cache provides significant performance
improvements. This also avoids traversing lower-level legacy
code which may not be optimized for multi-core systems,
causing many spinlocks or increasing cache line bounce.

2. Using I/O polling (for Synchronous I/O) rather than
Asynchronous I/O and Interrupt Handlers

I/O polling eliminates the overhead and long code paths
associated with I/O completion routines and deferred
procedure calls. Studies now show that with faster storage
media like NVMe, polling for completion of an I/O request
outperforms traditional interrupt-driven asynchronous I/O.

By intercepting the I/O request via MaxParallel’s filter driver,
many of the I/O requests can be satisfied either via local
cache or handled synchronously utilizing I/O polling for faster
response.

3. Avoiding cache line bounce

MaxParallel avoids sharing cache lines between non-related
I/Os and uses ‘lock free’ techniques. This significantly reduces
cache line bounce.

4. Avoiding global IO queues

Global IO queues serialize I/O requests and are not efficient
when there are multiple storage devices. In the scenario
where one disc has a lot of I/O requests and another has
very little, the one disc will always be waiting on the other.
MaxParallel avoids global I/O queues by creating multiple
queues so that disc requests can be satisfied in parallel.

FASTER RESPONSE FROM MAXPARALLEL
SOFTWARE

While there are many different approaches to optimizing
application performance, DataCore’s unique plug-and-play
software solution avoids the heavy lifting, risk, and expense
associated with coding changes, rearchitecting apps, and
hardware upgrades and delivers rapid time to value. Moreover,
the benefits can be easily measured and monitored with the
MaxParallel Dashboard.

Diagram 6: The MaxParallel™ Dashboard

For additional information, please visit datacore.com or email info@datacore.com
© 2018 DataCore Software Corporation. All Rights Reserved. DataCore, the DataCore logo and SANsymphony are trademarks or
registered trademarks of DataCore Software Corporation. All other products, services and company names mentioned herein may be
trademarks of their respective owners.

datacore.comdatacore.comEmpowering real-time, always-on data

WHITE PAPER

When optimizing I/O performance, there are several key
performance indicators that reflect the health of your system
and should be monitored before and after any optimizations
take place.

 ● Disk Reads/sec is the rate of read operations on all disks.
It is the read component of Total IOPS. Higher values
represent an increase in work performed.

 ● Disk Writes/sec is the rate of write operations on all disks.
It is the write component of Total IOPS. Higher values
represent an increase in work performed.

 ● Total IOPS, or Input/Output Operations per Second, is the
combined rate of read and write operations on all disks.
Higher values represent an increase in work performed.

 ● Average Read Latency is the average time, in milliseconds,
of a read of data measured across all disks. Lower values
are better.

 ● Average Write Latency is the average time, in milliseconds,
of a write of data measured across all disks. Lower values
are better.

 ● Total Throughput is the rate that bytes are transferred to
or from disks during I/O operations, measured across all
disks. Values may be in KB/sec, MB/s or GB/sec. Higher
values represent an increase in work performed.

By measuring these Key Performance Indicators (KPIs) before
and after enabling the MaxParallel software you can easily see
the improvements gained. The MaxParallel Dashboard above
(diagram 6) demonstrates a significant acceleration in I/O
performance, including lower latency and more productive
use of the discs – without changing a line of application code
or swapping out hardware.

SUMMARY & WRAP-UP

With the move to real-time, speed is everything. Fundamentally, faster data collection and analysis enables companies
to compete more effectively. With the right data at your fingertips, decisions are made faster, creating richer customer
experiences, more reliable products, and more productive employees. But just putting the best apps and infrastructure in
place isn’t enough. A Maserati can’t drive fast if it’s stuck in traffic. Same goes for your data. If your data is bogged down by
poor coding practices or long legacy code stacks in the OS, it won’t deliver the performance your business needs to stay
ahead. MaxParallel software delivers optimizations that enable true parallel I/O processing, creating ‘express lanes’ that service
requests quickly and independently, significantly improving responsiveness and productivity.

The best way to see the impact of MaxParallel is to try it yourself with a free 30-day trial.

Visit datacore.com/maxparallel today.

0418

