
Container Security 
10 Things DevOps 
Need to Do



2

Introduction
Few technologies have revolutionized software development the way 
containers have. According to Gartner, 65% of enterprises already have 
containers in production (end of 2017), with an additional 21% planning 
to go into production in 2018 and beyond.

The growth of containers has led to a revolution in the way organizations 
develop and deploy applications. Just a few years ago, most 
deployments were made up of isolated greenfield applications created 
and managed using Docker. Today, organizations have adopted tools 
such as Kubernetes for the purpose of transforming their application 
delivery process into an agile, scalable machine.

This has broad implications not just for development and operations, 
but also for security. With breaches such as the Equifax breach affecting 
millions of people at a time, the need for strong application security has 
never been more important.

For security departments, adoption of containerization presents a multi-
faceted challenge:

Containerization introduces new infrastructure that operates dynamically 
and is open in nature, with more potential for cross-container activity.

 • Containerization introduces new processes that move code through the 
software development pipeline at an accelerated pace and with greater 
flexibility (or, less oversight).

 • Containerization introduces new identities accessing resources in the 
form of developers and IT operations that may have an immediate effect 
on runtime environments.

From a delivery perspective, these are all elements that contribute 
to reducing the time to deployment, application resource footprint – 
collapsing the friction between operations and development.

https://blog.aquasec.com/equifax-breach-hindsight-what-if-they-used-containers


3

Dev
Threats to the build 
environment

Platform security

Segmenting 
microservices network

Segregation of duties

Test
Tightening user access 
control

Hardening the host

Run
Managing vulnerabilities 
in images

Reduce the container 
attack surface

Secrets management

Container runtime 
security

One of the challenges with this shortened pipeline is that it often leaves 
no room for security. The goal of DevOps is to deploy changes as quickly 
as possible and with as little maintenance as possible. As a result, 
processes that don’t directly contribute to the rapid implementation of 
changes are seen by developers as a hindrance. 52% of developers worry 
that application security will delay development and threaten deadlines, 
leaving security teams with little to no visibility into the DevOps process.

In enterprise environments, trusting developers not to introduce 
vulnerabilities can only go so far. The product must meet stringent 
requirements for compliance, reporting, and threat mitigation, and the 
only way for security teams to verify this is through full visibility into 
the DevOps process. This blending of DevOps and security is known as 
DevSecOps, and already 63% of organizations have either a formal or 
informal DevSecOps team in house.

https://www.veracode.com/sites/default/files/Resources/Reports/veracode-secure-development-survey-report.pdf
https://blog.aquasec.com/enterprises-readiness-for-devsecops


4

1. Threats to the Build Environment
Despite being a critical piece of the DevOps pipeline, the build 
environment is often overlooked as a security liability. Traditionally the 
build environment was less of a security risk, since it was not directly 
linked to production environments. With companies becoming more 
agile and adopting Continuous Integration and Continuous Development 
(CI/CD) practices, build environments now need to push changes to 
production several times a day. This requires direct access to secure 
resources, making it a more valuable target for attackers, who are also 
finding it harder to penetrate highly secure production environments 
directly. Attackers who infiltrate this environment could not only 
introduce malicious code, but also gain access to privileged accounts, 
internal services, and company secrets.

With many steps involved in the build process, vulnerabilities can be 
introduced anywhere: compromised source code, malicious libraries, 
loose access credentials, or insecure build servers. Containers 
compound this issue by merging applications with their operating 
environments. While this simplifies the deployment process, it creates 
an abstraction that makes it harder for security teams to audit the 
underlying code. Security teams must now analyze the application, 
the container environment, the images used to build the container, the 

1. Threats to the Build Environment

2. Managing Vulnerabilities in the 
Container Image

3. Reducing the Container Attack 
Surface

4. Tightening User Access Controls

5. Secrets Management

6. Hardening the Host

7. Container Runtime Security

8. Platform Security

9. Segmenting Microservices 
Network

10. Segregation of Duties

Here are ten key things DevOps should know about securing 
containerized applications:



5

build tools, and the build environment. The only way to do this without 
significantly impacting turnaround time is to give security teams insight 
into the build process from beginning to end.

DevOps teams need to secure the resources used during the build 
process to ensure the application remains untainted from source code 
to final artifact. Privileged access to the build environment should be 
restricted to only a few authorized users. Build tools that require access 
to code repositories, company servers, and other secure resources 
should also be restricted to user accounts with limited access, as well as 
isolated from other systems. 

2. Managing Vulnerabilities in the Container Image
Images are the static code files from which containers are instantiated. 
As a result, any vulnerabilities present in an image are guaranteed 
to be present in each container instantiated from it. From a security 
perspective, images must be as secure as possible or the entire 
application is at risk. It is also much easier and more effective to secure 
images at the source, rather than chase an impossibly large and elusive 
set of running containers.

Images are stored using a layer-based file system. Each layer represents 
a change from the layer below it, such as the addition of a file. Layers 
are reusable between images and containers to reduce download and 
deployment times. However, each layer also increases the risk of a 
vulnerability finding its way into the final container. A vulnerability in a 
common base layer can easily find its way into numerous containers.

Additional risk is posed by the use of public image registries such as 
Docker Hub, which allows developers to download and share images with 
millions of other users. Many of these images – especially base Linux 
images such as Ubuntu – form the base layer of many other images, 
which then go on to form the base of other images. Securing all of these 
layers can quickly become unmanageable, unless access to the original 
sources is controlled.



6

When using public registries, DevOps teams should only download signed 
images from trusted sources not tampered with in transit. Images should 
undergo comprehensive security scans and be pinned to a specific 
version, preventing unverified updates from introducing vulnerabilities. 
It’s also recommended to only allow designated developers to access 
public registries, and have an internal registry that only stores trusted 
base images for other developers to use.

3. Reducing the Container Attack Surface
Although containers provide a degree of isolation, vulnerable or 
improperly configured containers can still be leveraged to gain access 
to the host system. For example, Docker containers run as the root user 
by default. While this root user has fewer privileges than the host root 
user, it can still access mounted resources as well as the host kernel. 
An attacker could leverage these entry points to access secure files or 
exploit vulnerabilities to gain administrative access on the host.

One of the strengths of containerization is the isolation of the user 
namespace from the host system. This isolation allows for users and 
groups to be defined and managed independently of those of the host. A 
user account created within a container can still gain access to container 
resources and files but has a significantly smaller attack surface than a 
root user.

DevOps must follow the principle of least privilege and only have the 
permissions necessary to run the containerized application. The benefit 
is twofold: if an attacker gains access to the container, their ability to 
interact with the container is limited. And as a result, the attacker will 
find it more difficult to break out of the container onto the host.



7

4. Tightening User Access Control
Restricting user access to containers is essential, since containers 
of varying trust levels or sensitivity, as well as those associated with 
different applications, may run within the same cluster or on the same 
host. 

Both authentication and authorization should be controlled, so as to 
limit which users have access to which groups or types of containers, 
and, once they do have access, what their privileges allow them to 
do. For example, containers that make up PCI-compliant applications 
need to have access controlled separately from containers that make 
up other, non-PCI, applications. Additionally, an auditor or compliance 
team member may require visibility into an environment (seeing what 
processes are running, viewing audit logs), but should not have the ability 
to start or stop containers, or alter the Docker environment configuration.

These controls can be resolved through the use of external user 
access control systems, allowing you to set granular permissions for 
users rather than root level access. For example, both Docker EE1 and 
Kubernetes2 support role-based access control to resources in each 
of their respective environments, but they must be governed using a 
centralized policy.

Without a centralized approach, it’s difficult to determine whether the 
privileges assigned to users are consistent with their functional role, 
especially if those roles change over time.

1 https://docs.docker.com/ee/ucp/authorization

2 https://kubernetes.io/docs/reference/access-authn-authz/rbac



8

5. Secrets Management
Some containers require access to sensitive data during their operation. 
This sensitive data – known as secrets – can include credentials, tokens, 
and passwords. Solutions already exist for distributing secrets securely, 
but the transitory nature of containers has made the process more 
challenging.

All too often, secrets are hard-coded into the source code, images, or 
the build process. While this is convenient for testing, it has unintended 
side-effects, since there’s no telling in advance where an image would 
end up. Secrets embedded in an image can be spread to any user with 
access to the image, even when the image is stored in a private registry. 
And restricting secrets to build tools limits the ability for developers to 
test the application on their local systems.

A good secrets management solution allows DevOps teams to store 
secrets in a secure centralized vault while also ensuring that the relevant 
containers have access to the secrets they need in a way that makes the 
secret inaccessible anywhere along the way. This reduces the chance 
of an unsecured container leaking secrets, or abusing a secret to gain 
access to a restricted resource.

6. Hardening the Host
Although containers provide their own isolated environments, they still 
typically run on a host OS, sharing the kernel resources. As a result, 
hosts should be hardened against possible attacks originating from the 
container or the container runtime.

Host security depends heavily on the operating system (OS). It is 
highly recommended to dedicate hosts that run containers to only run 
containers, and not mix containerized with non-containerized workloads. 
This make it easier to control access and work with orchestrators. For 
running containers, it’s recommended to use a “thin OS”, typically a Linux 
distribution that is optimized for running containers and doesn’t include 



9

many of the unneeded capabilities of a full enterprise Linux distro - 
examples include Red Hat CoreOS, Rancher OS, and VMware’s Photon 
OS. A thin OS not only reduces the attack surface but offers improved 
speed and lower resource usage than a full OS. Certain minimal OSs 
may also offer features tailored to containers such as native clustering 
tools, a read-only root filesystem, and native support for Docker and 
other runtimes.

Most container runtimes provide additional hardening by leveraging Linux 
access limitation processes. The key components are namespaces and 
control groups (or cgroups). In essence, cgroups determine how much of 
the shared kernel and system resources a container can consume, while 
namespaces define which resources the container is allowed to access. 
It’s also recommended to use seccomp profiles, which limit access to 
Linux kernel system calls and can improve container-to-host isolation 
and prevent kernel exploits via containers.

In production environments, user access should also be strictly limited 
to “break glass” scenarios. Under normal operations, there’s no reason 
for any human admin to SSH into a host or configure it manually. Host 
should be managed through configuration management templates (e.g., 
using Chef or Ansible), and only the orchestrator should have ongoing 
access to run/stop containers.

7. Container Runtime Security
Containers can write files, start new processes, and increase their 
resource usage. An attacker who gains access to a container can abuse 
this resource usage, running unauthorized code and persisting changes 
across future instances of the container.

To reduce this risk, containers should be immutable. Immutability 
prevents a container from being modified once it’s running, requiring 
an entirely new image to be deployed if changes need to be made. This 
ensures that all containers created from an image are identical on first 
start and that each container behaves in essentially the same way. It also 



10

prevents the creation of “snowflake” deployments—deployments with 
custom or unique configurations—which are harder for DevOps teams to 
troubleshoot.

Even after ensuring immutability, containers should be monitored for 
modifications, exposed ports, open connections, and other signs of 
intrusion. 

8. Platform Security
Containerized applications are only as secure as the container runtime 
itself. The steps involved will vary depending on the runtime, the host 
OS that the runtime is running on, and any additional features or plugins 
used. However, several organizations have published guidelines for 
optimal platform security.

Two of the more popular auditing tools is the Center for Internet Security 
(CIS) Docker Benchmark3 and its Kubernetes Benchmark, a step-by-step 
checklist of industry best practices for managing Docker installations 
and Kubernetes clusters in a secure way. Each section describes not 
only the implications and risks of a security vulnerability but how to 
detect and remediate it. This includes updating OS components and 
applications, setting mandatory access control policies, and performing 
comprehensive logging and monitoring.

There are open source tools that can perform checks against these 
benchmarks - for example Aqua’s Kube-Bench runs the full list of checks 
against the CIS Kubernetes Benchmark.

3 https://kubernetes.io/docs/reference/access-authn-authz/rbac

https://github.com/aquasecurity/kube-bench


11

9. Segmenting the Microservices Network
Monolithic applications typically have relatively static network 
deployments with reserved IP addresses, hostnames, and ports. 
Containers, however, get dynamic IP addresses from orchestrators, and 
may appear and disappear from nodes quite frequently, with a lifespan 
of hours rather than days. Instead of conceptualizing networks as 
physical connections hidden behind a gateway, container networks are 
software-defined networks that operate on logical connections based 
on the container service context, usually provided by the orchestrator or, 
in more advanced deployments, by a service mesh.

Microsegmentation involves splitting up a network into smaller zones 
and applying high-level IT security policies to each zone. Policies can 
be applied to specific types of traffic or even to specific containers. 
This allows DevOps teams to manage ports, resolve DNS addresses, 
create load balancers, and proxy requests across complex, distributed 
applications. 

If an attacker does gain access to a networked container, segmentation 
ensures that the number of resources exposed to the attacker is 
much smaller than it would be otherwise. For security, preventive 
microsegmentation is often not enough, and additional firewall controls 
between containerized services should be implemented, in order to go 
beyond passive measures and actively monitor and block attackers that 
try to traverse the network. 

10. Segregation of Duties
Segregation of Duties, often referred to as SoD, is a security principle that 
mandates that no single person or team should have unlimited privileged 
access to a system. Typically, this means that, for example, sysadmins 
who manage and run servers will not be responsible for the security of 
those servers, nor will they have access to change the security settings - 
that job will be performed by the security team.



12

With containers, the lines are often blurred due to the heavy use of 
DevOps methods and sometimes a form of DevSecOps approach that 
merges security processes into DevOps. However, this does not mean 
that SoD should not be enforced - in fact, it should be enforced more than 
ever, since the speed at which damage can be caused by both malicious 
insiders as well as simple mistakes is multiplied. 

For examples, in many Kubernetes setups, there is no built-in SoD, and 
the cluster admin is “all powerful”. This poses unacceptable risk in 
enterprise production environments, and there must be controls in place 
that allow security teams to monitor and enforce security policy, assess 
risk, and prevent admins from changing security controls on the cluster, 
the Kubernetes console, and access to nodes on the cluster.

About Aqua
Aqua Security enables enterprises to secure their container and cloud-
native applications from development to production, accelerating 
application deployment and bridging the gap between DevOps and IT 
security. 

Aqua’s Container Security Platform provides full visibility into container 
activity, allowing organizations to detect and prevent suspicious 
activity and attacks in real time. Integrated with container lifecycle and 
orchestration tools, the Aqua platform provides transparent, automated 
security while helping to enforce policy and simplify regulatory 
compliance. Aqua was founded in 2015 and is backed by Lightspeed 
Venture Partners, Microsoft Ventures, TLV Partners, and IT security 
leaders, and is based in Israel and Boston, MA.  

For more information, visit www.aquasec.com

or follow us on twitter.com/AquaSecTeam

http://www.aquasec.com 
https://twitter.com/aquasecteam?lang=en

