
W H IT E PA P E R

ACCELERATING ERROR
DETECTION AND RESOLUTION
FOR DEVELOPERS

w w w. b a c k t r a ce . i o

B y P e t e r V a r h o l

http://www.backtrace.com
http://visualstudiomagazine.com
http://www.backtrace.io

[1]

: :W H IT E PA P E R

When testing fails to identify issues that occur in real-world usage, it leads to application

crashes and production downtime that require an immediate response. In many cases, any amount

of downtime will cost the business money, customers, or goodwill. In an all-hands on deck

situation, developers need powerful solutions to support them in quickly diagnosing and repairing

application errors.

WHAT CAN GO WRONG?
There are a wide variety of application defects and exceptions that can occur in both unmanaged

and managed code. Understanding the types and causes of exceptions possible is the first step in

building a strategy to deal with them.

Most faults leave behind clues as to their cause. For unmanaged—or low-level code—like C and

C++, those clues may come in the form of dump files and similar artifacts that include raw data

and contents of memory locations at the time of the crash. Searching these dumps for clues to the

cause of a crash is similar to looking for a needle in a haystack. The amount of data is

overwhelming, and requires the time and unique expertise that many developers don’t possess.

For these low-level languages, buffer overflows and pointer mismatches are common. It’s not

unusual for a developer to make a mistake on pointer arithmetic or variable size, mistakes that can

cause an overwrite of data or code. Some other common types errors with the potential to crash a

inding the root cause of application exceptions is one of the most difficult
and frustrating jobs developers face. It’s challenging to find time to resolve
issues during the development process, when delays cost the team and the
company time and money; but the longer a team waits to address bugs, the
more difficult they are to resolve.

While testing has become more sophisticated, it covers only a fraction of
the functionality, and pre-production test environments cannot replicate

the complexity of a distributed, cloud-based production system. And outside of the cloud,
end users continue to use traditional native applications, mobile systems, TV apps, and
new embedded devices, with hundreds of different brands and operating system versions.
This leads to more complexity, with the sheer number of heterogeneous runtime
environments that end users will use.



C
ov

er
: a

nt
b

 /
 S

hu
tt

er
st

oc
k.

co
m

“REDUCING THE TIME NEEDED TO DIAGNOSE AND

ADDRESS EXCEPTIONS IS VITAL IN PRODUCTION.”

[2]

C/C++ based application include:

• �A malformed conditional expression, when it’s inadvertently not tested for or handled in the

conditional construct, can lead to a fault.

• �Memory leaks, when a memory location isn’t reclaimed for future use once it has served its

purpose, can cause instability and faults. While most applications call on other memory

addresses for storage, these leaks accumulate after an application has run long enough and

the application will run out of heap space and crash.

• �Segmentation faults, where an application tries to access a protected area of memory, are

often the result of poor pointer arithmetic and virtual memory addressing, and can be

particularly difficult crashes to analyze and address.

• �Another common type of fatal pointer error is the null pointer, where the application expects

a valid value at that pointer address, only to discover that the pointer hasn’t yet been set.

Many developers have come to rely on managed platforms such as the .NET Common Language

Interface (CLI) to reduce the likelihood of the aforementioned fatal exceptions. The CLI automates a

number of error-prone operations, and will catch and perform basic processing on several common

exceptions. Other higher languages such as JavaScript, Swift, or Go have similar runtime environments

that provide functions like exception handling, memory allocation, and garbage collection.

However, as many developers using managed platforms and languages can attest, exceptions

in logic are still possible. Fatal arithmetic errors, such as divide by zero, are common when

appropriate checks are not put in place, and are common in both managed and unmanaged

languages. Anything that causes an application to produce an illegal or nonsensical result has the

ability to cause an exception, depending on the context and the code following. It’s not feasible to

catch every possible exception, and some will leak through to crash or otherwise impair the

application.

Some developers meticulously add appropriate try-catch-throw statements to try to recover

and continue execution, or the application might simply provide an error message that describes

the exception and exit as gracefully as possible. What developers more often see when a system

or application crashes is a cryptic and usually unhelpful error message. Encapsulating all code into

a try-catch-flow block is inefficient in both developer time and application execution, and simply

isn’t practical for large-scale use.

Developers can also employ log analysis tools to attempt to make sense of crashes. Servers log

a great deal of data on both the system and the application, and developers can analyze that data

to help diagnose crashes. However, developers can’t easily correlate log data with application

activities and state, making it difficult to find root causes with existing solutions.

“UNDERSTANDING THE TYPES AND CAUSES OF 		

EXCEPTIONS POSSIBLE IS THE FIRST STEP IN 		

BUILDING A STRATEGY TO DEAL WITH THEM.”

: :W H IT E PA P E R

[3]

In many cases, developers and operations professionals may not even be able to determine the

cause of an exception, even if it is caught. If an exception is sporadic and seemingly random, it

may be impossible to reliably reproduce the error, and any reproduction may seemingly come

under different situations. Furthermore, in multithreading systems, race conditions can cause

sporadic and random exceptions. Situations such as this, as well as the inevitable need to get back

online in production, may lead developers to simply reboot the instance rather than investigate

the exception. That means that the root cause is never addressed, and exceptions will continue to

affect the application.

GET BACK UP AND RUNNING AS QUICKLY AS POSSIBLE
Teams should strive to reduce the time needed to diagnose and resolve exceptions. While this is

important during development, it is vital in production. Holding up efforts during development

can have schedule and cost implications, but preventing the application from operating in 		

production can be catastrophic to a business. This is also the case for systemic issues—those that

appear multiple times in similar form. Recognizing the pattern can be difficult for developers

unless presented in specific ways.

Developers must have an understanding of the operation of the application and use of the

programming language, as well as what kinds of exception data is produced by the language and

platform. Reducing the time for diagnosis and repair involves following a structured process for

recovering and analyzing exception data.

The first thing developers can do during the development process is to produce a debug build

with symbols preloaded. While not always appropriate for production deployment, it can be a

significant help during development and test, especially in a CI/CD environment, where much of

the workflow is automated and continuous.

For production environments, external symbol files provide additional information to the

exception, making it human readable and linking back to source code if available. They organize

the call stack information in a logical sequence to make it more understandable. When debug

builds are not available, appropriate use of symbol files helps make the problem solvable. Loading

and using symbols should be made as automatic as possible in the workflow in development,

build, and test to reduce the time to detection and resolution.

INTEGRATING EXCEPTION ANALYSIS WITH THE LARGER WORKFLOW
Development and DevOps teams incorporate many tools to improve their workflow, including

ones focused on communication, monitoring, and ticket tracking. Integrating exception analysis

with these existing tools is critical towards reducing mean time to detection and resolution.

: :W H IT E PA P E R

“DEVELOPERS CAN’T EASILY CORRELATE LOG DATA WITH

APPLICATION ACTIVITIES AND STATE, MAKING IT DIFFICULT

TO FIND ROOT CAUSES WITH EXISTING SOLUTIONS.”

[4]

Exception analysis data can be used to automatically trigger notifications and alerts, as well as

create tickets.

• Communication: Coordination between team members is an important aspect of exception

analysis. The expertise needed to analyze data and produce an answer may reside in individuals

and locations beyond the immediate crash, and a seamless way of communicating data using tools

such as Slack or Webex Teams helps automate and accelerate diagnosis and repair.

• Monitoring: If the application is in production, in all likelihood the enterprise is monitoring it

for performance and availability. The monitoring might be as simple as scanning the log files, or it

might be a comprehensive view of all transactions, timings, and exceptions, fatal and non-fatal.

These include data that would likely be useful in evaluating unhandled and fatal exceptions. A

business-critical production application also has to alert teams, especially DevOps teams, that an

exception or crash has occurred. Integration with common monitoring tools should also be a high

priority for exception and crash analysis.

• Tracking: While exceptions and crashes have to be analyzed and addressed quickly,

especially when they occur in production, the details of such an event still need to be recorded

and tracked for further analysis and historical purposes. Therefore, integration with bug tracking

or planning tools such as JIRA or GitHub is a strong requirement so that teams can keep a lasting

and detailed record of the crash, actions taken, and results.

IMPROVE YOUR EXCEPTION HANDLING
Developers need solutions to manage crash and exception data to better understand where they

occur and prevent future occurrences. This is particularly important as applications reach larger

scale, where the pressure to get from crash back to production is exponentially greater, and it’s

imperative that people collaborate efficiently, even across teams.

Solutions and techniques that make crash and exception data more transparent are essential in

accelerating analysis and resolution. This is because exception data is exceedingly difficult to

understand and use in diagnosis. It typically involves cryptic messages, code and data in

hexadecimal format, along with errors from the operating system and platform.

Integrating communication tools and supporting the collaboration among team members is

essential to the analysis and resolution efforts. Sharing data within the tool chain, and with other

developers who may have expertise and ideas, serves to get answers more quickly, and to

implement and try out those answers.

A structured examination of crash and exception data can accelerate the resolution of errors

and get applications back online quickly. The exact nature of the structure depends on the

application, programming language and platform, and what kinds of errors it produces. Often

“DEVELOPERS NEED SOLUTIONS TO MANAGE CRASH AND

EXCEPTION DATA TO BETTER UNDERSTAND WHERE

THEY OCCUR AND PREVENT FUTURE OCCURRENCES.”

: :W H IT E PA P E R

[5]

crash data can be used in conjunction with

other monitoring and diagnosis information to

minimize downtime and keep an application

deployed.

Backtrace provides the ability to organize,

query, and readily obtain valuable information

on the state of the system at the crash point.

Using Backtrace, crash and exception

reporting can be done across the majority of

desktop, server, mobile, and embedded

Operating Systems. This includes Windows,

MacOS, iOS, various flavors of Linux

(including Android and Yocto), and FreeBSD.

Backtrace will consume a crash report object and crash dump file, such as minidump or core

dump, that is generated by an application fault.

Backtrace can consume the output from common minidump generators, like Crashpad,

Breakpad, or Windows, that produce a snapshot of the application’s state at the time of crash,

including threads and their call stacks, the stack memory space for each thread, register values,

attributes (environment variables, system information, and custom metadata), and a listing of

loaded modules with their metadata. Once consumed, Backtrace analyzes the state of the

application at the time of error to support a quick resolution.

Backtrace captured libraries do not run until the moment an error occurs. This means there is

no performance impact during normal application execution, making Backtrace perfectly suited

for production environments. When implemented during testing, Backtrace allows teams to fully

investigate errors without the need to recreate the issue. In production environments, Backtrace

streamlines the process of capturing and processing relevant exception and crash data, giving you

visibility into the issues affecting your end users.

Visit http://backtrace.io for more information on its features and capabilities, and to schedule

a live demonstration.

Find out more: http://backtrace.io

Peter Varhol is a technical evangelist. He has more than 20 years of experience writing technical 		

articles, blog posts, and papers on technical practices and products. He has graduate degrees in 	

computer science, mathematics, and psychology, and experience as an evangelist, product manager,

software developer and tester, and technology journalist.

: :W H IT E PA P E R

http://backtrace.io
http://backtrace.io

